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ABSTRACT

Semiconductor-based integrated circuits have become the mainstream for very-large-scale in-

tegration (VLSI) systems such as high-speed digital circuits, radio-frequency integrated circuits

(RFIC), and even monolithic microwave integrated circuits (MMIC). The shrinking feature size

and increasing frequency promote high integration density and interconnection complexity that

demand high accuracy modeling techniques. The current design paradigm has shifted from the

transistor-driven design to the interconnect-driven design. Thus the accurate and efficient mod-

eling of on-chip interconnect becomes critical for the computer-aided design tools to analyze the

overall system performance.

In this research, we focus on implementing the full wave spectral domain approach (SDA)

for accurate modeling of shielded microstrip interconnects. Two new techniques, the mid-point

summation (MPS) and the super convergent series (SCS) approach have been developed to accel-

erate the SDA by nearly five to six orders of magnitude. It involves the leading term extraction of

the Green’s function and the Bessel’s function and using the above two methods to accelerate the

summation of slowly convergent infinite spectral series.

An accelerated SDA has been developed using two superconvergent series to handle the more

general case of multilayered shielded microstrip interconnects in which the signal strip can be

displaced from the center. In addition to this, closed form expressions have been developed to

dynamically choose the number of terms and the value of the parameters as a function of the

argument, to adaptively obtain the best convergence of the second type of superconvergent series

for a given accuracy and argument.
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The accelerated spectral domain formulation using two super convergent series was extended

to handle multiple metal lines on the same interface and very accurate results have been obtained

for the propagation constant using a few terms of the infinite summation.

Also an equivalent model for a lossy shielded microstrip line on layered media is constructed

by replacing the layered media with a single effective medium and a detailed analysis of its validity

at different frequencies and different range of dimensions has been presented for application to on

chip interconnects. The relative permittivity for a single layer microstrip which results in the same

propagation constant for the dominant mode as the layered one at a given frequency is considered to

be the equivalent. The results show that this model is frequency independent for layered structures

when the given frequency and frequency of operation are less than the transition frequency (i.e.

the frequency at which there is a significant change in the equivalent dielectric constant (ϵreq)). For

frequencies higher than the transition frequency the equivalent model is not frequency independent

but it gives good results for the higher order mode although it is derived using the dominant mode.

Also it is seen that at low frequency ϵreq depends on the layers near to the signal metal but at higher

frequencies it depends on the layer with the highest value of ϵr irrespective of its location w.r.t to the

metal strip. For the case, when some of the layers have a finite conductivity we see two transition

frequencies. The first transition frequency just depends on the layer with the highest σri/ϵri ratio

and the second transition frequency is the same as that for the lossless case and occurs when the

thickness of the layer with the highest value of ϵri becomes comparable to the wavelength.

The spectral domain immitance approach (SDIA) was extended to handle multiple metal lines

in different layers. Also, several techniques to account for the finite thickness and conductivity

of the metal lines have been studied. The pulse-triangle and triangle-triangle basis functions were

developed so as to include this effect into the SDA. This, is because entire domain basis func-

tions such as Chebyshev polynomials will lead to nonconvergent infinite series summation while

calculating the elements of the MoM matrix.
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CHAPTER 1. Introduction

In the last three decades there has been a rapid advancement in semiconductor based integrated

circuits such as VLSI cicuits, RFIC’s, MMIC circuits and high speed digital circuits. With the rapid

increase in the frequency and the reduction in feature size, newer technologies such a multichip

modules, multi level and multilayered interconnect modules have been developed to support higher

integration density.

Due to the reduction of device size and increase of overall chip size, the signal delays on

interconnect networks become critical in determining the overall circuit performance. Currently

the VLSI design paradigm is shifting from the conventional transistor-driven to the interconnect-

driven design to satisfy the total technical requirements. Moreover, the high integration density

makes circuits vulnerable to the harsh electromagnetic interference (EMI). The requirement of

signal integrity demands that the computer-aided design (CAD) tools should accurately and effi-

ciently predict the electrical properties of interconnects. In order to cope up with the advancement

in these technologies, the accurate modeling of electromagnetic (EM) properties of interconnects

is the key.

1.1 Research Motivation

With the increasing demands on the speed and accuracy in electronic design automation (EDA)

tools, there is need for fast and accurate modeling of interconnects over a wide frequency range.

As we know, the 3-D integrated interconnect structures are very complex consisting of multiple

layers of metal lines, vias, etc. embedded in multiple layers of lossy medium. In order to increase
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the speed and accuracy domain decomposition methods are being used in recent electromagnetic

solvers like HFSS 13. In the future versions of electromagnetic solvers the whole problem will be

split into domains using the domain decomposition method and each domain would be analyzed

using a problem specific approach on a separate core [5]. The techniques proposed in this thesis

and its extensions can improve the speed and accuracy in the modeling of metal lines and patches

embedded in a multilayered lossy material which constitute a major portion of any chip. Also

in the modeling and simulation of multilayered interconnects as shown in Figure 1.1, one needs

to combine many thin layers together to increase mesh uniformity and reduce computation time

and memory requirements. It is very handy to be able to model the structure as using a single

effective medium. In most packages and semiconductor backends, dummy metallization, ground

planes and vias are typically placed around the signal interconnects for both process optimization

and electrical coupling reduction. In high density packaging, external electromagnetic interference

(EMI) shielding may be used to limit interaction between components or a die may be flip-chip

assembled above the power or ground plane of an underlaying package substrate. In such cases,

microstrip transmission lines on the silicon can be considered as being in a shielded environment.

In MMIC circuits it is common to use packaging to provide isolation so the circuits need to be

modeled keeping into account the enclosing shielding box. Metallic shielding is commonly used

to give mechanical support and to improve heat dissipation. The effects of the shielding become

considerable in the following two situations [6]. Firstly, when the frequency of operation exceeds

the cut off frequency for the higher order modes. Secondly, when the side walls and top of the

metal box are very close to the circuitry [7], these are referred to as proximity effects. In the first

case the occurrence of high Q resonances can cause an abrupt change in the response around the

resonance frequency. The proximity of the side walls to the circuit metallization usually causes

a shift in the frequency and certain other global perturbations in the response of the circuit. The

proximity effects are more prominent at a lower frequency because when the frequency is lower

the electrical distance between the side wall and the metal strip is very small but it increases with
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increase in frequency. If the box size is reduced the effective dielectric constant (ϵreff) will reduce

because more and more electric field lines will terminate on the side walls and the top surface

so the concentration of field lines in the dielectric region will reduce and a larger percentage of

energy will propagate in the air region. This makes the accurate modeling of multilayered shielded

interconnect structures all the more important.

1.2 Problem Statement

In this thesis an attempt has been made to accurately and efficiently extract the effective

medium parameters for multilayered interconnect structure with multiple dummy metallizations

or multiple metal lines with finite thickness and conductivity in different layers as shown in Fig-

ure 1.1. We have used the spectral domain approach (SDA) to accomplish this. SDA is much more

efficient and accurate as compared to using the finite element method (FEM) [8], finite difference

(FD) [8] because it uses the Green’s function which already takes into account the boundary condi-

tions very accurately. Also the grid dispersion error is absent in the SDA. Also by using the entire

domain basis instead of sub domain basis very accurate results for the propagation constant can be

obtained using a few basis functions. But in spite of these advantages of small matrix sizes the ac-

curate computation of the matrix elements can be computationally intensive as it requires infinite

summation of slowly convergent spectral series. Also as the complexity increases drastically as

the number of metal lines increases. In addition, to this the resistive thin sheet approximation and

impedance boundary condition (IBC) [9],[10] can be used to model very thin and very thick metal

lines, respectively. Also a R-Card/IBC formulation proposed by [11] can be used to model strip

thickness less than skin depth (δ) and greater than nearly three times δ. But there are no accurate

models reported which can model metal lines with metal thickness of the order of its width which

is the case in modern interconnects.

So at first we consider a simplified problem of a single layer shielded microstrip with a single
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Figure 1.1 Shielded multilayered interconnects with multiple dummy metalliza-
tions or multiple metal lines in different layers

signal strip at the center to demonstrate the acceleration of the convergence of the matrix elements.

We then increase the complexity of the problem by considering a generalized multilayered shielded

microstrip in which the signal strip is displaced from one of the side walls by a distance c.

In the next step we will look at the multilayered shielded microstrip with multiple conductors

on the same plane as shown in Figure 6.1. Finally we will consider the case of a multilayer shielded

microstrip when we have multiple conductors located in different layers as shown in Figure 1.1.

Also, we will consider some approximations to model the metal lines with a finite thickness and

conductivity.
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1.3 Literature Review

1.3.1 Spectral Domain Approach for Shielded Microstrip Lines and Acceleration of Infinite

Series Summation

The spectral domain approach (SDA) results in accurate results for propagation constants for

shielded microstrip lines using a few basis functions. However, as the required accuracy increases

the computation time increases very rapidly because of the slow convergence of the spectral se-

ries summation making this approach computationally intensive for computer aided design (CAD)

purposes. In order to accelerate the convergence of spectral series summation several techniques

have been used ([3], [12]). Also for open microstrip with double negative materials an approach

based on leading term extraction has been demonstrated [13]. The time intensive part in the SDA

is the calculation of the matrix elements and not finding the determinant as the matrix size is small

[3]. By using appropriate basis functions and adding the asymptotic tails of the series involved im-

provement in accuracy and CPU time can be obtained [14]. Cano et al. [3] have proposed a leading

term extraction technique for accelerating but it involves the computation of the Green’s function

in the space domain and a time intensive double integral to find each element of the Galerkin

matrix. Tsalamengas and Fikioris [12] have proposed a leading term extraction technique using

rapidly convergent series but it involved the computation of the generalized Riemann Zeta function

and Gamma function for the computation of the coefficients which is time consuming although it

converges quite fast. Also the convergence is slow by using very small number of basis functions.

The approximation of summation with a fast convergent series has been frequently used to

speed up the solution of several problems in electromagnetics. But such convergent series exist

only for specific cases and cannot be applied to speed up the summation in any general case. The

Euler Maclaurin formula (EMF) [15]-[16] has been widely used for approximation of finite and

infinite series summations for any general series [17]. The Shanks transformation has been used to

accelerate the convergence of infinite series [18]. However, the problem with the Shanks transfor-
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mation is that it can accelerate only certain type of series and it does not work well especially for

the kinds of series which occur in the SDA. Also, an approach known as summation by parts has

been reported for fast convergence of series in which one of the terms is easily integrable and the

other one is convergent [19] but its efficiency decreases for small values of the argument. Another

promising approach to approximate an infinite summation of series is the Richardson extrapolation

[20] but again its convergence depends on the nature of series.

1.3.2 Equivalent Model

Although a unified dispersion model was developed by Verma and Hassani [21] for the shielded

multilayer microstrip using the single layer reduction (SLR) formulation and a new unified disper-

sion model was developed by Verma and Kumar [22] but both approaches are based on the disper-

sion model of the effective dielectric constant for an open microstrip line over a single layer which

makes the equivalent structure lose its inhomogeneity. In addition, it was restricted to lossless

media.

1.3.3 Analysis of Multilayered Shielded Interconnects

Several approaches have been used for the modeling of multi layered on chip interconnect

structures. Zhu and Jiao [23] have used the finite element method for the full wave analysis of on

chip interconnect structures. Chew and Radhakrishnan [2] have used the finite difference method

for the analysis of multilayered multi conductor shielded interconnects. Mosig et al. have used an

approach based on the method of moments for the analysis multilayer planar boxed circuits [24].

The finite element approach and the finite difference approach are slow. Also to get an accurate

solution the mesh size has to be very small which will lead to very large matrix sizes. But by

using the spectral domain approach with a small number of basis functions it is possible to obtain a

very accurate solution for the propagation constant or the effective medium. Also, it is possible to

accelerate the slow convergence of spectral series using leading term extraction by several orders
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of magnitude. Xu and Omar [25] have presented an improved formulation of the singular integral

equation method for shielded multilayer microstrip lines. But this method is complicated compared

to the SDA because of being multistage and requires a large number of basis functions and hence

a large matrix size to obtain the propagation constant.

1.3.4 Approximation of Finite Thickness and Conductivity of Signal Strip

Another big obstacle in accurate modeling of multilayered interconnects is the modeling of

metal lines with finite thickness and conductivity. In the newer technologies as the size of the

chips is decreasing and more and more functionality it being packed into them the width of the

on chip interconnects is decreasing. But in order to keep the resistance small the thickness of

the metal layer is also increasing. So this puts forth a great challenge for accurate modeling of

metal layers with finite conductivity and thickness in interconnect structures. In order to solve

this problem several approaches like the perturbation approach, the quasi TEM method and full

wave approaches like conformal mapping, hybrid-mode formulation, mode matching, method of

lines (MOL), spectral domain approach (SDA), the finite element method (FEM), boundary in-

tegral equation method, transverse resonance technique, the extended spectral domain approach

([26]-[27]) have been proposed but all of them fail the test of accuracy or computation time. The

perturbation approach [28] works well only when the strip thickness is comparable to the skin

depth. The quasi TEM approach ([29]-[30]) can accurately model metal losses but it cannot han-

dle multilayered structures. Also the current and field distribution as obtained using the full wave

methods may be completely different from the quasi static case, especially for suspended substrate

structure. The quasi-TEM approach fails when the conductivity of the substrate is greater than 0.1

S/mm. The mode matching method [31] and FEM [32] can take care of real metal but the com-

putation becomes very time consuming if we have a large number of layer which is generally the

case with interconnects. Thus the above mentioned full wave techniques cannot be used in all situ-

ations because of the approximation made or computation complexity. In the transverse resonance



www.manaraa.com

8

method [33] and the extended spectral domain approach ([26]-[27]) the metal was first assumed

to have infinite conductivity in order to calculate the effective dielectric constant and the electric

and magnetic fields. The expression for the fields along with the power loss method [34] is used

to determine the loss due to the real metal comprising the metal strip. Some researchers have used

the skin depth approximation (thickness of strip is much larger than skin depth) and treated the real

metal signal strip using surface impedance boundary condition (IBC) to determine propagation and

attenuation constants at the same time ([9] and [10]). The IBC describes the relationship between

the electric and magnetic fields on the boundary, which is defined as the surface impedance, when

the metallization thickness is much thicker than the skin depth. This metallization layer attenu-

ates transmitted waves and eventually becomes impenetrable. The impedance boundary condition

and the power loss method are suitable for cases in which the skin depth is of the order of strip

thickness. Krowne et al. [35] have used the resistive boundary condition (R-Card) to solve for

the propagation constant assuming the strip thickness to be much smaller than skin depth which

is not the case in many applications in MMICs and interconnects. However, the IBC and R-Card

models neglect the dependence of surface impedance on TE/TM fields of the hybrid LSE/LSM

modes inside the conductor, therefore Amari et al. [36] presented a LSE/LSM-mode impedance

model. For large thickness (t), the model converges to a surface impedance as in the IBC approx-

imation and for t → 0 it converges to a shunt resistance as in the R-card model. In [37], all three

components of strip currents were considered in the modified SDA. The rigorous integral equation

formulation with dyadic Green’s function was proposed for the skin effect of conductor strips [38].

A generalized transverse-resonance-diffraction approach was developed for the modeling of planar

structures with thick lossy conductors [39]. In [40], a two-layer model was used to approximate

the moderately thick conductors on the top and bottom surfaces with two PEC BCs. A N-layer

model was applied to evaluate the conductor loss in [41].
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CHAPTER 2. Numerical Acceleration of Spectral Domain Approach for

Shielded Microstrip Lines by Approximating Summation with Mid-Point

Summation and Super Convergent Series

2.1 Introduction

y

x
h

2w2w−

0 0
,r rε εµ µRegion 1

Region 2

0 0
,µ ε

d

2a

 

 

Figure 2.1 Single layer shielded interconnect with one signal strip

In this chapter, two novel techniques for numerical acceleration of the SDA for shielded mi-

crostrip by accelerating the convergence of series summation in the elements of the Galerkin matrix

have been presented. The first approach uses Maclaurin series and theory of contour integrals to

approximate the infinite summation of the leading term with a super convergent series (SCS). So

there is neither a need for evaluation of complex coefficients using Gamma functions or Riemann

Zeta functions nor for numerical integration. The second approach approximates the summation

of the leading terms from Nmax to infinity using a novel mid-point summation (MPS) formula. The
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derivation of the mid-point summation formula is also included.

2.2 Shielded Microstrip

Figure 2.1 shows a cross section of a shielded microstrip. The region 2 consists of air. Region

1 is a dielectric material with relative permittivity and permeability ϵr and µr, respectively. The

structure is uniform and infinite along the z axis. The thin metal casing and the thin metal strip are

assumed to be perfect electric conductors (PECs). The width of the metal strip is w and that of the

box is 2a.

2.3 Spectral Domain Approach (SDA)

The microstrip structure cannot support pure transverse electromagnetic (TEM) waves. The

solutions are hybrid modes which are superpositions of infinite TEz and TMz modes or TEy and

TMy modes [42], [43]. For the solution of hybrid modes using infinite TEy and TMy please refer

to Appendix B. For the TEz and TMz modes all the field components can be expressed as two

z-components of vector potentials [34].

2.3.1 Vector Potentials

The z dependency of the electric and magnetic field has the form of e−jβz. The vector potential

for TMz mode is

Azi(x, y, z) = −ωϵiµi

β
Φ

(e)
i (x, y)e−jβz (2.1)

and the vector potential for TEz mode is

Fzi(x, y, z) = −ωϵiµi

β
Φ

(h)
i (x, y)e−jβz (2.2)

They satisfy homogeneous Helmholtz equation in source free region (y ̸= h),

∇2
tΦ

(p)
i (x, y) + (k2

i − β2)Φ
(p)
i (x, y) = 0 (2.3)
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where k2
i = ω2ϵiµi, i = 1, 2, and p = e, h.

The z-components of transverse electric (TE) and transverse magnetic (TM) modes can be

written in terms of Φ(p)
i (x, y) as

Ezi(x, y, z) = j
k2
i − β2

β
Φ

(e)
i (x, y)e−jβz (2.4)

Hzi(x, y, z) = j
k2
i − β2

β
Φ

(h)
i (x, y)e−jβz (2.5)

The transverse components can be written in terms of ∇tΦ
(p)
i (x, y) as

Eti(x, y, z) = ∇tΦ
(e)
i (x, y)e−jβz − ωµi

β
ẑ ×∇tΦ

(h)
i (x, y)e−jβz (2.6)

Hti(x, y, z) = ∇tΦ
(h)
i (x, y)e−jβz +

ωϵi
β

ẑ ×∇tΦ
(e)
i (x, y)e−jβz (2.7)

or

Exi(x, y) =
∂Φ

(e)
i

∂x
+

ωµi

β

∂Φ
(h)
i

∂y
(2.8)

Eyi(x, y) =
∂Φ

(e)
i

∂y
− ωµi

β

∂Φ
(h)
i

∂x
(2.9)

Hxi(x, y) =
∂Φ

(h)
i

∂x
− ωϵi

β

∂Φ
(e)
i

∂y
(2.10)

Hyi(x, y) =
∂Φ

(h)
i

∂y
+

ωϵi
β

∂Φ
(e)
i

∂x
(2.11)

All the fields and the potentials are defined from x = −a to a and can be expanded as follows.

f̃(m) =

∫ a

−a

dx f̃(x)ejαmx =

∫ a

−a

dx f̃(x)
[
cos (αmx) + j sin (αmx)

]
(2.12)

f(x) =
1

2a

∞∑
m=−∞

f̃(m)e−jαmx =
1

2a

∞∑
m=−∞

f̃(m)
[
(cosαmx)− j sin(αmx)

]
(2.13)

where αm = mπ/a. Using the boundary conditions and the properties of Fourier series [43] we

can obtain that m = (n− 1/2) for the even mode (n = 1, 2, ...).



www.manaraa.com

12

2.3.2 Fourier Transform and General Solutions

By taking the Fourier transform of Φ(e)
i (x, y) and Φ

(h)
i (x, y) with respect to x the partial differ-

ential equation (2.3) can be reduced to ordinary differential equation

Φ̃
(p)
i (αn, y) =

∫ a

−a

dxΦ
(p)
i (x, y)ejαnx (2.14)

Φ
(p)
i (x, y) =


1
a

∑∞
m=1 Φ̃

(p)
i (αn, y) cos (αnx)

− j
a

∑∞
m=1 Φ̃

(p)
i (αn, y) sin (αnx)

(2.15)

where i = 1, 2, p = e, h and αn = (n− 1/2)π/a.

The wave equation (2.3) now becomes(
d2

dy2
− γ2

i

)
Φ̃

(p)
i (αn, y) = 0 (2.16)

where γ2
i = α2

n + β2 − k2
i .

The general solutions of the wave equation are of the form

Φ̃
(p)
i (αn, y) = A

(p)
i (αn)e

γiy +B
(p)
i (αn)e

−γiy

= C
(p)
i (αn) sinh(γiy) +D

(p)
i (αn) cosh(γiy) (2.17)

The field components in the spectral domain can be written as

Ẽzi(αn, y) = j
k2
i − β2

β
Φ̃

(e)
i (αn, y) (2.18)

H̃zi(αn, y) = j
k2
i − β2

β
Φ̃

(h)
i (αn, y) (2.19)

Ẽxi(αn, y) = −jαnΦ̃
(e)
i (αn, y) +

ωµi

β

∂

∂y
Φ̃

(h)
i (αn, y) (2.20)

H̃xi(αn, y) = −jαnΦ̃
(h)
i (αn, y)−

ωϵi
β

∂

∂y
Φ̃

(e)
i (αn, y) (2.21)

We can see that we do not need normal component Ẽy and H̃y to solve the problem.
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2.3.3 Boundary Conditions

Applying the boundary conditions to find the unknowns in (2.17). Considering PEC boundary

conditions at y = 0 and y = h+ d we get

Ez1(x, 0) = 0 =⇒ Ẽz1(αn, 0) = 0 =⇒ Φ̃
(e)
1 (αn, 0) = 0

=⇒ Φ̃
(e)
1 (αn, y) = A(αn) sinh(γ1y) (2.22)

Ez2(x, h+ d) = 0 =⇒ Ẽz2(αn, h+ d) = 0 =⇒ Φ̃
(e)
2 (αn, h+ d) = 0

=⇒ Φ̃
(e)
2 (αn, y) = B(αn)

sinh[γ2(h+ d− y)]

sinh(γ2d)
(2.23)

Ex1(x, 0) = 0 =⇒ Ẽx1(αn, 0) = 0 =⇒ ∂

∂y
Φ̃

(h)
1 (αn, y)

∣∣∣∣
y=0

= 0

=⇒ Φ̃
(h)
1 (αn, y) = C(αn) cosh(γ1y) (2.24)

Ex2(x, h+ d) = 0 =⇒ Ẽx2(αn, h+ d) = 0 =⇒ ∂

∂y
Φ̃

(h)
2 (αn, y)

∣∣∣∣
y=h+d

= 0

=⇒ Φ̃
(h)
2 (αn, y) = D(αn)

cosh[γ2(h+ d− y)]

cosh(γ2d)
(2.25)

We have four unknowns A(αn), B(αn), C(αn), and D(αn), so we need four more boundary con-

ditions to solve for them. There is no surface magnetic current Ms on the interface, so tangential

electric fields are continuous

Ẽz1(αn, h) = Ẽz2(αn, h) =⇒ k2
1 − β2

β
Φ̃

(e)
1 (αn, h) =

k2
2 − β2

β
Φ̃

(e)
2 (αn, h)

=⇒ (k2
1 − β2)A(αn) sinh(γ1h) = (k2

2 − β2)B(αn) (2.26)

Ẽx1(αn, h) = Ẽx2(αn, h)

=⇒ −jαnΦ̃
(e)
1 (αn, h) +

ωµ1

β

∂

∂y
Φ̃

(h)
1 (αn, y)

∣∣∣∣
y=h

= −jαnΦ̃
(e)
2 (αn, h) +

ωµ2

β

∂

∂y
Φ̃

(h)
2 (αn, y)

∣∣∣∣
y=h

=⇒ jαn[A(αn) sinh(γ1h)−B(αn)] =
ω

β
[γ1µ1C(αn) sinh(γ1h) + γ2µ2D(αn) tanh(γ2d)]

(2.27)
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Using the boundary condition for the magnetic field

ŷ × (H2 −H1) = Js (2.28)

Generally, the surface current Js has both x- and z-components

Js(x, y = h, z) =
[
x̂Jx(x) + ẑJz(x)

]
e−jβz (2.29)

In spectral domain, it can be written as:

ŷ ×
[
H̃2(αn, h)− H̃1(αn, h)

]
= x̂J̃x(αn) + ẑJ̃z(αn) (2.30)

H̃z2(αn, h)− H̃z1(αn, h) = J̃x(αn)

=⇒ j
k2
2 − β2

β
D(αn)− j

k2
1 − β2

β
C(αn) cosh(γ1h) = J̃x(αn) (2.31)

and

H̃x2(αn, h)− H̃x1(αn, h) = −J̃z(αn)

=⇒ −jαn

[
D(αn)− C(αn) cosh(γ1h)

]
+

ω

β

[
ϵ1γ1A(αn) cosh(γ1h) + ϵ2γ2B(αn)

]
= −J̃z(αn)

(2.32)

Now we have four equations (2.26), (2.27), (2.31) and (2.32) so we can solve for A, B, C and

D.

Ẽx2(αn, h) = −jαnΦ̃
(e)
2 (αn, h) +

ωµ2

β

∂

∂y
Φ̃

(h)
2 (αn, y)

∣∣∣∣
y=h

= −jαnB(αn)−
ωµ2

β
γ2 tanh(γ2d)D(αn)

= Gxx(αn, β)J̃x(αn) +Gxz(αn, β)J̃z(αn)

Ẽz2(αn, h) = j
k2
2 − β2

β
Φ̃

(e)
2 (αn, h) = j

k2
2 − β2

β
B(αn)

= Gzx(αn, β)J̃x(αn) +Gzz(αn, β)J̃z(αn)
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where

Gxx(αn, β) =
j

ω∆̃

[
µrγ1(α

2
n − k2

2) tanh(γ1h) + γ2(α
2
n − k2

1) tanh(γ2d)
]

(2.33)

Gxz(αn, β) = Gzx(αn, β) =
jαnβ

ω∆̃

[
µrγ1 tanh(γ1h) + γ2 tanh(γ2d)

]
(2.34)

Gzz(αn, β) =
j

ω∆̃

[
µrγ1(β

2 − k2
2) tanh(γ1h) + γ2(β

2 − k2
1) tanh(γ2d)

]
(2.35)

∆̃ =
[
γ1 tanh(γ1h) + ϵrγ2 tanh(γ2d)

] [
γ1 coth(γ1h) + µrγ2 coth(γ2d)

]
(2.36)

where ϵr = ϵ1/ϵ2 and µr = µ1/µ2.

2.3.4 Method of Moments

Now we have two equations with two unknowns

Gxx(αn, β)J̃x(αn) +Gxz(αn, β)J̃z(αn) = Ẽx1(αn, h) (2.37)

Gzx(αn, β)J̃x(αn) +Gzz(αn, β)J̃z(αn) = Ẽz1(αn, h) (2.38)

Finally, let us look at electric fields and currents at the interface y = h. We have PEC boundary

condition on strip

Ex1 = Ex2 = Ez1 = Ez2 =

 0 |x| < w/2

unknown |x| > w/2

There is no current outside PEC strip

Jx(x) = Jz(x) =

 unknown |x| < w/2

0 |x| > w/2

Therefore their products are zero

Ex1(x)Jx(x) = 0 (2.39)

Ez1(x)Jz(x) = 0 (2.40)
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The unknown current J̃x(αn) and J̃z(αn) are be expanded in terms of basis function J̃xi(αn) and

J̃zi(αn) as follows

J̃x(αn) =
Mx∑
i=1

aiJ̃xi(αn) (2.41)

J̃z(αn) =
Mz∑
i=1

biJ̃zi(αn) (2.42)

The basis currents are chosen such that Jxi(x) and Jzi(x) are nonzero only on the strip |x| < w/2,

and Jxi(x) is a real odd function, Jzi(x) is a real even function for the dominant mode and other

even modes. According to the properties of Fourier transform, J̃xi(αn) is a purely imaginary and

odd function, J̃zi(αn) is a purely real and even function.

The Parseval’s theorem says that

∞∑
n=1

f̃(n)g̃(n) = 2a

∫ a

−a

f(x)g(−x)dx (2.43)

So we have

∞∑
n=1

Ẽx2(αn, h)J̃xm(αn) = 2a

∫ ∞

−∞
Ex2(−x, h)Jxm(x)dx = 0 (2.44)

∞∑
n=1

Ẽz2(αn, h)J̃zm(αn) = 2a

∫ a

−a

Ez2(−x, h)Jzm(x)dx = 0 (2.45)

or

∞∑
n=1

Ẽx2(αn, h)J̃xm(αn) = 0,m = 1, 2.....Mx (2.46)

∞∑
n=1

Ẽz2(αn, h)J̃zm(αn) = 0,m = 1, 2.....Mz (2.47)

Equations (2.46) and (2.47) can be written it in matrix form as: Kxx Kxz

Kzx Kzz


 A

B

 =

 0

0
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where

Kpq
ij =

∞∑
n=1

J̃pi(αn)Gpq(αn, β)J̃qj(αn) =
∞∑
n=1

F pq
ij (2.48)

where F pq
ij = J̃pi(αn)Gpq(αn, β)J̃qj(αn), p = x, z and q = x, z. and

 A

B

 =



a1
...

aMx

b1
...

bMz


(2.49)

For a homogeneous system to have a non trivial solution determinant should be zero.

D(β, ω) = det

 Kxx Kxz

Kzx Kzz

 = 0 (2.50)

The propagation constant β, for each frequency point ω can be found by solving the above equation.

2.4 Basis Functions for Currents

There are multiple choices of current basis. The basis currents are chosen such that Jxi(x) and

Jzi(x) are nonzero only on the strip |x| < w/2, and Jxi(x) is a real odd function, Jzi(x) is a real

even function. So from the properties of Fourier transforms, J̃xi(αn) is a purely imaginary and

odd function, J̃zi(αn) is a purely real and even function. Chebyshev polynomials of the first and

second kind are chosen as the basis for Jz(x) and Jx(x), respectively [34]. This is because the

Fourier transform for the Chebyshev polynomial along with the weighting function to take care of

the edge singularity for the longitudinal current and the zero at the edges for the transverse current

is the Bessel’s function. We could also use weighted sine/cosine basis but its Fourier transform

would be a sum of Bessel’s functions which would complicate the formulation.
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2.4.1 Chebyshev Polynomials

For the even mode Jz(x) is an even function so it can be expanded using the even order Cheby-

shev polynomials of the first kind including a term to incorporate the edge singularities [34].

Jz(x) =
Mz∑
n=1

Izn
T2n−2(2x/w)√
1− (2x/w)2

(2.51)

where T2n(u) satisfies recursive relation [13]

T0(u) = 1

T1(u) = u

T2(u) = 2u2 − 1

Tn(u) = 2uTn−1(u)− Tn−2(u) (2.52)

where δn = αnw/2. The transverse current Jx is proportional to ω so as frequency decreases it

will become very small compared to Jz therefore Jx has been normalized with k0w [44]. Jx(x)

is an odd function so it is expanded using odd order Chebyshev polynomials of the second kind

including a term to make sure that it vanishes at the edges.

Jx(x) = j
√
1− (2x/w)2

Mx∑
n=1

IxnU2n−1(2x/w) (2.53)

where U2n−1 satisfies

U0(u) = 1

U1(u) = 2u

U2(u) = 4u2 − 1

Un(u) = 2uUn−1(u)− Un−2(u) (2.54)

The Fourier transforms of the unknown current J̃x(αn) and J̃z(αn) are expanded in terms of
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basis functions J̃xi and J̃zi as follows:

J̃x(αn) =
Mx∑
i=1

aiJ̃xi(αn)k0w (2.55)

J̃z(αn) =
Mz∑
i=1

biJ̃zi(αn) (2.56)

The Fourier transforms of the basis functions can be written as:

J̃x(αn) =
wπ

δn

Mx∑
i=1

Ixii(−1)iJ2i(δn)k0w (2.57)

J̃z(αn) =
wπ

2

Mz∑
i=1

Iz(i−1)(−1)i−1J2(i−1)(δn) (2.58)

Jn(z) is the Bessel function of the first kind.

2.5 Leading Term Extraction

2.5.1 Asymptotic Approximation to Green’s Functions

As αn → ∞, keeping the first two terms in Taylor expansion. We have

γ1 =
√

α2
n + β2 − k2

1 ≈ αn +
β2 − k2

1

2αn

(2.59)

γ2 =
√

α2
n + β2 − k2

2 ≈ αn +
β2 − k2

2

2αn

(2.60)

∆̃ ≈ (ϵrγ2 + γ2)(µrγ2 + γ1) = ϵrµrγ
2
2 + (ϵr + µr)γ1γ2 + γ2

1

≈ α2
n(1 + ϵr)(1 + µr)

+
1

2
(1 + ϵr)

[
(β2 − k2

1) + µr(β
2 − k2

2)
]
+

1

2
(1 + µr)

[
(β2 − k2

1) + ϵr(β
2 − k2

2)
]

(2.61)

Notice that higher order terms of αn are thrown away and the Green’s function can be approximated

as:

Gxx(αn, β) ≈ Gxx0αnw(1− y1xx/α
2
n) (2.62)
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Figure 2.2 Convergence of Gxx using first and second leading terms for β = 3k0

Gxz(αn, β) ≈ Gxz0(1− y1xz/α
2
n) (2.63)

Gzz(αn, β) ≈
Gzz0

αnw
(1− y1zz/α

2
n) (2.64)

where

Gxx0 =
1

1 + ϵr
(2.65)

Gxz0 =
β

(1 + ϵr)k0
(2.66)

Gzz0 =
(β2 − k2

1) + µr(β
2 − k2

2)

k2
0(1 + ϵr)(1 + µr)

(2.67)

y1xx =
β2

2
+

ϵrk
2
1 + k2

2

2(1 + ϵr)
(2.68)

y1xz =
β2

2
+

(k2
2 − k2

1)(1− µr)

2(1 + µr)
− ϵrk

2
2 + k2

1

2(1 + ϵr)
(2.69)

y1zz = β2 − k2
2 +

1

2

[(k2
2 − k2

1

1 + µr

+
k2
2 − k2

1

1 + ϵr

)
− (β2 − k2

1)(β
2 − k2

2)(1 + µr)

(β2 − k2
1) + µr(β2 − k2

2)

]
(2.70)
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Figure 2.3 Convergence of Gxz using first and second leading terms for β = 3k0

Consider a shielded microstrip with parameters ϵr = 11.7, µr = 1, f = 4GHz, h = 3.17mm, w =

3.04mm, 2a = 34.74mm, d = 50mm. Figure 2.2 shows that Gxx decreases as 1/n, as 1/n3 after

subtracting the first and as 1/n5 after subtracting the first two leading terms. Figure 2.3 shows that

Gxz is nearly constant, it decreases as 1/n2 after subtracting the first and as 1/n4 after subtracting

the first two leading terms. Also Figure 2.4 shows that Gzz increases as n, decreases as 1/n after

subtracting the first and as 1/n3 after subtracting the first two leading terms. For derivation please

refer to [13].
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Figure 2.4 Convergence of Gzz using first and second leading terms for β = 3k0

2.5.2 Approximating Summation with Super Convergent Series

2.5.2.1 Asymptotic Expansion for the Bessel Function

The series for the Bessel function [45], [46] is given by

Jn(z) =
( 2

zπ

) 1
2
[
cos
(
z − nπ

2
− π

4

)(
1− C2

n

(8z)2
+ ..
)
− sin

(
z − nπ

2
− π

4

)(C1
n

8z
− C3

n

(8z)3
+ ..
)]

(2.71)

Therefore keeping terms up to 1/z3 and putting z = δn and n = 2i

J2i(δn) ≈
( 2

δnπ

) 1
2
(−1)i

[
cos
(
δn −

π

4

)(
1− C2

2i

(8δn)2

)
− sin

(
δn −

π

4

)(C1
2i

8δn
− C3

2i

(8δn)3

)]
(2.72)

Putting n = 2i− 1

J2i−1(δn) ≈
( 2

δnπ

) 1
2
(−1)i+1

[
sin
(
δn −

π

4

)(
1−

C2
2i−1

(8δn)2

)
+ cos

(
δn −

π

4

)(C1
2i−1

8δn
−

C3
2i−1

(8δn)3

)]
(2.73)
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where n ∈ {0, 1, 2, 3, ..}, C0
n = 1 and

Ck
n =

1

k!

k∏
m=1

[4n2 − (2m− 1)2] =
4n2 − (2k − 1)2

k
Ck−1

n (2.74)

Using (2.48), the leading term extraction for the Bessel’s function and the Green’s function and

δn = αnw/2, Kpq
ij can be written as:

Kpq
ij ≈

Nmax∑
n=1

[
F pq
ij − F̃ pq

ij

]
+

∞∑
n=1

F̃ pq
ij (2.75)

Considering terms up to 1/α5
n, F̃ pq

ij can be written as:

F̃ pq
ij (−1)i+j =

Gpq0

αnw

(
1− y1pq

α2
n

)
J2i(δn)J2j(δn)(−1)i+j =

Gpq0

(αnw)2

{
1 + sin(αnw)

+ (C1
2i + C1

2j)
cos(αnw)

4αnw
−
[
16y1pqw

2 + C2
2i + C2

2j − C1
2iC

1
2j + (16y1pqw

2 + C2
2i + C2

2j

+ C1
2iC

1
2j) sin(αnw)

] 1

(4αnw)2
−
[
C3

2i + C3
2j + C2

2iC
1
2j + C1

2iC
2
2j

+ 16y1pqw
2(C1

2i + C1
2j)
]cos(αnw)

(4αnw)3

}
(2.76)

For any series of the form [34]
∑∞

n=1,3,5.. e
jnz/nk where k = 2, 3, 4, ...:

∞∑
n=1,3,5..

ejnz/nk = j
∞∑

n=1,3,5..

∫ z

0

(
ejnz/nk−1

)
dz +

∞∑
n=1,3,5..

1/nk (2.77)

Also we know that [34]

∞∑
n=1,3..

ejnz/n = −(1/2) ln[tan(z/2)] + jπ/4, |z| < π (2.78)

From [47] the Maclaurin Series expansion of ln(tan z) can be written as

ln(tan z) = ln z + z2/3 + 7z4/90 + 62z6/2835 + 127z8/18900 + 146z10/66825

+ 1414477z12/1915538625 + 32764z14/127702575 +O[z]16, |z| < π (2.79)
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So the first term in right hand side of (2.77) is evaluated using (2.78) and (2.79) and the second

term is calculated using the Riemann Zeta function [48].

∞∑
n=1,3,5,..

sin(nz)/n2 =− [(z/2) ln(z/2)− z/2 + z3/72 + 7z5/14400 + 31z7/1270080

+ 127z9/87091200 + 73z11/752716800 + ..] (2.80)

Similarly for any series of the form
∑∞

n=1 e
jnz/nk where k = 2, 3, 4, ... [34]:

∞∑
n=1

ejnz/nk = j
∞∑
n=1

∫ z

0

(
ejnz/nk−1

)
dz +

∞∑
n=1

1/nk (2.81)

Also we know that [34]

∞∑
n=1

ejnz/n = − ln[2 sin(z/2)] + j(π − z)/2, 0 < z < 2π (2.82)

From [47] the Maclaurin Series expansion of ln(sin z) can be written as

ln(sin z) = ln z − z2/6− z4/180− z6/2835− z8/37800− z10/467775....,−π < z < π (2.83)

So the first term in right hand side of (2.81) is evaluated using (2.82) and (2.83) and the second

term is calculated using the Riemann Zeta function.

∞∑
n=1

sin(nz)/n2 =− (z ln z − z − z3/72− z5/14400− z7/1270080− z9/87091200

− z11/5269017600− ..) (2.84)

In the second term on the right hand side in (2.75), as given in (2.76), terms involving infinite

summation of sinusoidal functions divided by αk
n can be approximated using super convergent

series as in (2.78) and (2.82) and those of the form 1/αk
n can be evaluated using the Riemann Zeta

function [48]. The expression for the SCS for higher orders are given in Appendix A.
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2.5.3 Approximation of Summation to Integral with Mid-point Summation (MPS)

This section presents a new formula involving integral and derivatives of the function, to ap-

proximate the summation of a series to an integral with mid-point summation (MPS) [49]. In

addition, a simple recursive relation to evaluate the coefficient has been derived. The error in ap-

proximating the summation with MPS, using the same number of terms, converges one order faster

than the EMF. Also, a general expression for the special case involving a summation of a product

of a sinusoidal function and another function which goes to zero as the argument approaches in-

finity has been developed. A recursive relation to obtain the coefficients for the special case has

also been presented. This new formula has been used in accelerating the infinite summation of

series occurring in SDA for shielded microstrips to obtain very accurate and quick results for the

propagation constant.

2.5.3.1 Euler Maclaurin Formula (EMF)

According to the Euler Maclaurin formula [15]

b∑
n=a

f(n) =

∫ b

a

f(x)dx+
1

2

[
f(a) + f(b)

]
+

1

12

[
f

′
(a)− f

′
(b)
]
− 1

720

[
f

′′′
(a)− f

′′′
(b)
]

+ ...+
B2p

(2p)!

[
f (2p−1)(a)− f (2p−1)(b)

]
+ ... (2.85)

where B2p are Bernoulli numbers. B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42,

B8 = −1/30,... B2n+1 = 0 for n > 1 [50]. The Bernoulli numbers are defined as follows:

z/(ez − 1) =
∞∑
n=0

Bnz
n/n!, |z| < 2π (2.86)

For F (x) =
∫
f(x)dx → 0, f (n)(x) → 0 as x → ∞ using (2.85) we can write

∞∑
n=N

f(n) =− F (N) +
1

2
f(N)− 1

12
f

′
(N) +

1

720
f

′′′
(N)− 1

30240
f (v)(N) + ... (2.87)
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2.5.3.2 Mid-point Summation

Now we will approximate the summation with an integral. Using Taylor series we can write

f(x−N) = f(N) +
∞∑
n=1

1

n!
f (n)(N)(x−N)n (2.88)

Integrating x from N − 1/2 to N + 1/2 using the mid-point rule we get

f(N) =

∫ N+ 1
2

N− 1
2

f(x)dx−
∞∑
n=1

2−2n

(2n+ 1)!
f (2n)(N) (2.89)

The general form is written as:

f(N) = F (x)
∣∣∣N+ 1

2

N− 1
2

+
∞∑
n=1

cnf
(2n−1)(x)

∣∣∣N+ 1
2

N− 1
2

(2.90)

where a recursive relation for cn is derived by substituting (2.90) into (2.89). Using (2.90) we can

write:

f (2m)(N) = f (2m−1)(x)
∣∣∣N+ 1

2

N− 1
2

+
∞∑
n=1

cnf
(2n+2m−1)(x)

∣∣∣N+ 1
2

N− 1
2

(2.91)

Substituting f (2n)(N) using (2.91) in (2.89) we get

f(N) = F (x)
∣∣∣N+ 1

2

N− 1
2

−
∞∑
n=1

2−2n

(2n+ 1)!

[
f (2n−1)(x)

∣∣∣N+ 1
2

N− 1
2

+
∞∑

m=1

cmf
(2m+2n−1)(x)

∣∣∣N+ 1
2

N− 1
2

]
(2.92)

Changing the summation variable

 n = 1 → ∞

m = 1 → ∞

⇒

 l = n+m = 2 → ∞

n = 1 → l − 1


we get:

f(N) =F (x)
∣∣∣N+ 1

2

N− 1
2

−
∞∑
n=1

2−2n

(2n+ 1)!
f (2n−1)(x)

∣∣∣N+ 1
2

N− 1
2

−
∞∑
l=2

l−1∑
n=1

cl−n
2−2n

(2n+ 1)!
f (2l−1)(x)

∣∣∣N+ 1
2

N− 1
2

(2.93)

=F (x)
∣∣∣N+ 1

2

N− 1
2

+
∞∑
n=1

cnf
(2n−1)(x)

∣∣∣N+ 1
2

N− 1
2

(2.94)
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Using (2.93) cn can be obtained as:

cn = − 2−2n

(2n+ 1)!
−

n−1∑
m=1

2−2mcn−m

(2m+ 1)!
(2.95)

Some of the ci’s have been calculated to be:

c1 = − 1

22 · 3!
, c2 =

23 − 1

24 · 3 · 5!
, c3 = − 25 − 1

26 · 3 · 7!
, c4 =

3(27 − 1)

28 · 5 · 9!
, c5 = − 5(29 − 1)

210 · 3 · 11!
,

c6 =
691(211 − 1)

212 · 105 · 13!
, c7 = −35(213 − 1)

214 · 15!
(2.96)

Therefore

b∑
n=a

f(n) =

∫ b+ 1
2

a− 1
2

f(x)dx+
∞∑
n=1

cnf
(2n−1)(x)

∣∣∣b+ 1
2

a− 1
2

(2.97)

This new formulation using MPS needs one term less than the EMF given in (2.85).

For F (x) =
∫
f(x)dx → 0, f (n)(x) → 0 as x → ∞ using (2.97) we can write

∞∑
n=N

f(n) = −F (N − 1

2
) +

1

24
f

′
(N − 1

2
) (2.98)

− 7

5760
f

′′′
(N − 1

2
) +

31

967680
f (v)(N − 1

2
) + ...

Let us apply both the EMF (2.87) and the MPS formula (2.98) to the following example which

has a closed form.
∞∑
n=1

1

(n− 1
2
)2

=
Nmax∑
n=1

1

(n− 1
2
)2

+
∞∑

n=Nmax+1

1

(n− 1
2
)2

(2.99)

Figure 2.5 shows the comparison of the relative error in approximating
∑∞

n=1 1/(n− 1/2)2 using

EMF and the MPS formula. The exact value of this expression is known to be π2/2 [48]. Direct

refers to considering only first term on the right hand side of (2.99), nth EMS refers to using up to

n terms of the EMF and nth MPS refers to using first n terms of the MPS formula to approximate

the second term on the right hand side of (2.99). The figure shows that the MPS requires one

term less than the EMF in order to obtain similar order of accuracy. Therefore, EMF converges as

1/Nn
max if we use the first n terms but the MPS formula converges as 1/Nn+1

max .
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Figure 2.5 Comparison of MPS and EMF for evaluating
∞∑
n=1

1/(n− 1/2)2

2.5.3.3 Special Case

Let f(x) = h(x)g(x) where g(x) = sin(zx+ α). Denote

g̃(x) = z

∫
g(x)dx = − cos(zx+ α) (2.100)

Then we have

g′(x) = z cos(zx+ α) = −zg̃(x) (2.101)

g′′(x) = −z2g(x) (2.102)

g(2n)(x) = (−1)nz2ng(x) (2.103)

g(2n−1)(x) = (−1)nz2n−1g̃(x) (2.104)

Define n times integral of g(x) as

g̃(n)(x) ≡

 (−1)n−1g̃(x) n = odd

(−1)ng(x) n = even
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Therefore

g(n)(x) = (−1)nzng̃(n)(x) (2.105)

Using integral by part, we have∫
dxh(x)g(x) =

∞∑
n=1

1

zn
(−1)n−1h(n−1)(x)g̃(n)(x) (2.106)

The (2n)th order derivative in (2.89) is written as:

f (2n)(x) =
[
h(x)g(x)

](2n)
=

2n∑
i=1

(2n)!

i!(2n− i)!
h(i)(x)g(2n−i)(x) (2.107)

Now, the second term in (2.89) can be written as:
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Figure 2.6 Convergence of Mid-point Summation for evaluating
∞∑
n=1

sin[(n− 1/2)z]/(n− 1/2)2, z = πw/a = .55

∞∑
n=1

2−2n

(2n+ 1)!
f (2n)(N) =

∞∑
n=1

2−2n

(2n+ 1)

2n∑
i=0

1

i!(2n− i)!
h(i)(N)g(2n−i)(N) (2.108)
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For the i = 0 term on the right hand side of (2.108)

h(N)
∞∑
n=1

2−2n

(2n+ 1)!
g(2n)(N) =h(N)g(N)

∞∑
n=1

(−1)n

(2n+ 1)!
(z/2)2n

=h(N)g(N)
[sin(z/2)

z/2
− 1
]

(2.109)

For the i = 2m− 1 term on the right hand side of (2.108)

h(2m−1)(N)
1

(2m− 1)!

∞∑
n=m

2−2n

(2n+ 1)(2n− 2m+ 1)!
g(2n−2m+1)(N) (2.110)

= h(2m−1)(N)g̃(N)
1

22m−1(2m− 1)!

∞∑
n=m

(−1)n−m−1

(2n+ 1)(2n− 2m+ 1)!
(z/2)2n−2m+1

= h(2m−1)(N)g̃(N)
(−1)m−1

22m−1(2m− 1)!
sinc(2m−1)(z/2)

where

sinc(n)(z/2) =
dn

dxn

sin(x)

x

∣∣∣
x=z/2

(2.111)

For the i = 2m term on the right hand side of (2.108)

h(2m)(N)
1

(2m)!

∞∑
n=m

2−2n

(2n+ 1)(2n− 2m)!
g(2n−2m)(N) (2.112)

= h(2m)(N)g(N)
1

22m(2m)!

∞∑
n=m

(−1)n−m

(2n+ 1)(2n− 2m)!
(z/2)2n−2m

= h(2m)(N)g(N)
(−1)m

22m(2m)!
sinc(2m)(z/2)

Combining the above results we have

∞∑
n=1

2−2n

(2n+ 1)!
f (2n)(N) =

∞∑
n=1

2−2n

2n+ 1

2n∑
i=0

1

i!(2n− i)!
h(i)(N)g(2n−i)(N) (2.113)

=
∞∑
i=1

1

i!
h(i)(N)

∞∑
n=[i/2]

2−2n

(2n+ 1)(2n− i)!
g(2n−2[i/2])(N)

=h(N)g(N)
[
sinc(z/2)− 1

]
+

∞∑
i=1

h(i)(N)g̃(i)(N)
1

2ii!
sinc(i)(z/2)

where [i/2] is the integer part of i/2.
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Using (2.89) and (2.106) we can write

∞∑
n=1

1

zn
(−1)n−1h(n−1)(x)g̃(n)(x)

∣∣∣N+ 1
2

N− 1
2

= h(N)g(N)sinc(z/2) +
∞∑
i=1

h(i)(N)g̃(i)(N)
1

2ii!
sinc(i)(z/2)

(2.114)

Substituting (2.108) in (2.89) yields the result in general form:

h(N)g(N) =
∞∑
n=1

cn
zn

(−1)n−1h(n−1)(x)g̃(n)(x)
∣∣∣N+ 1

2

N− 1
2

(2.115)

Deriving a recursive relation to find ci’s

h(i)(N)g̃(i)(N) =
∞∑
n=1

cn
zn

(−1)n−1h(i+n−1)(x)g̃(i+n)(x)
∣∣∣N+ 1

2

N− 1
2

(2.116)

c1 = 1/sinc(z/2). Substituting (2.118) in (2.117) we get:

1

c1
h(N)g(N) =

∞∑
n=1

1

zn
(−1)n−1h(n−1)(x)g̃(n)(x)

∣∣∣N+ 1
2

N− 1
2

(2.117)

+
∞∑
i=1

(−1)[i/2]

2ii!
sinc(i)(z/2)

∞∑
n=1

cn
zn

(−1)n−1h(i+n−1)(x)g̃(i+n)(x)
∣∣∣N+ 1

2

N− 1
2

Changing the summation variable n = 1 → ∞

i = 1 → ∞

⇒

 m = n+ i = 2 → ∞

i = 1 → m− 1


we get:

1

c1
h(N)g(N) =

∞∑
n=1

1

zn
(−1)n−1h(n−1)(x)g̃(n)(x)

∣∣∣N+ 1
2

N− 1
2

−
∞∑

m=2

1

zm
(−1)m−1h(m−1)(x)g̃(m)(x)

∣∣∣N+ 1
2

N− 1
2

m−1∑
i=1

(−1)icm−i

i!

(z
2

)i
sinc(i)(z/2)

=
1

z
h(x)g̃(x)

∣∣∣N+ 1
2

N− 1
2

+
∞∑

m=2

1

zm

[
1−

m−1∑
i=1

(−1)icm−i

i!

(z
2

)i
sinc(i)(z/2)

]
(−1)m−1h(m−1)(x)g̃(m)(x)

∣∣∣N+ 1
2

N− 1
2

(2.118)
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Therefore

h(N)g(N) =
∞∑
n=1

cn(z/2)

zn
(−1)n−1h(n−1)(x)g̃(n)(x)

∣∣∣N+ 1
2

N− 1
2

(2.119)

where the coefficients cn are derived in a recursive form using

c1(x) = 1/sinc(x) (2.120)

cn(x)

c1(x)
= 1−

n−1∑
m=1

cn−m(x)

m!
(−1)mxmsinc(m)x, n ≥ 2 (2.121)

where

sinc(n)x =
dn

dxn
sincx =

dn

dxn

sin x

x
(2.122)

Using this relation we can derive

c2 =
cosx

sinc2x
, c3 =

3 + cos(2x)

4sinc3x
, c4 =

23 cos x+ cos(3x)

24sinc4x
, c5 =

115 + 76 cos(2x) + cos(4x)

192sinc5x
,

c6 =
1682 cos x+ 237 cos(3x) + cos(5x)

1920sinc6x
(2.123)

Thus, for h(x) → 0, h(n)(x) → 0 as x → ∞.

∞∑
n=N

h(n)g(n) = −c1
z
h(N − 1

2
)g̃(N − 1

2
)− c2

z2
h′(N − 1

2
)g(N − 1

2
)+

c3
z3
h′′(N − 1

2
)g̃(N − 1

2
)+ ...

(2.124)

Figure 2.6 shows the convergence of the MPS formula for approximating
∑∞

n=1 sin[(n −

1/2)z]/(n − 1/2)2, z = πw/a = .55 using different number of terms of (2.124). The summa-

tion can be written in a form similar to (2.99). The reference value is calculated using the super

convergent series [51]. Direct refers to considering sum of terms up to Nmax, nth refers to using

first n terms of the MPS formula to approximate the summation from Nmax + 1 to ∞. The figure

shows that the rate of convergence using n terms of the series is 1/Nn+2
max . The formulation for the

SDA and the leading term extraction will be the same as the previous case. But the summation of

the matrix elements can be written in the following form.

Kpq
ij ≈

Nmax∑
n=1

F pq
ij +

∞∑
n=Nmax+1

F̃ pq
ij (2.125)
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n=Nmax

F̃ pq
ij consists of terms of the form sinusoidal functions divided by αk

n which are ap-

proximated using (2.124) with g(x) equal to constant or sinusoidal function and h(x) equal to

1/αk
n as it satisfies the condition h(x) → 0, h(n)(x) → 0 as x → ∞. Terms of the form 1/αk

n are

approximated using (2.98).
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Figure 2.7 Convergence of (F zz
11 − F̃ zz

11 )α
2
n as function of n for β = 3k0 for

different number of leading terms.

2.6 Numerical Results

Both the approach were numerically validated using a shielded microstrip with parameters

ϵr = 11.7, µr = 1, f = 4GHz, h = 3.17mm, w = 3.04mm, 2a = 34.74mm, d = 50mm [3].

The results for the first approach or the convergent series approach are as follows. Figure 2.7

shows that if we use k leading terms the difference F zz
11 − F̃ zz

11 converges as 1/nk+2. From Fig-

ures 2.8(a) and 2.8(b) it is observed that the convergence of Kzz
11 and determinant of K matrix

changes from 1/Nmax using the direct summation to 1/N3
max using up to second leading term and
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Figure 2.8 Convergence of (a)Kzz
11 and (b)determinant of K matrix for Mz=1,

Mx=1 and β = 3k0 using different number of leading terms.
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Figure 2.9 3D plot for Relative error in ϵreff with different number of basis func-
tions using four leading terms

finally to 1/N5
max using up to fourth leading term. Here, the result using four leading terms with

Nmax = 1000000 is used as reference. Also Figures 2.8(a), 2.8(b), 2.10(a) and 2.10(b) show that

the results are similar if we use odd number of leading terms or the next even number of leading

terms. This can be explained by the fact that the even leading terms do not have a constant term

but only have sinusoidal functions which converge faster than the constant term.

Figure 2.12 shows the relative error in ϵreff as a function of different combinations of the basis

function and it can be observed that the result become more and more accurate if we fix the basis

function in one direction and increase the number of basis in the other direction. Also it is seen

that if Mz is fixed the optimal value of Mx will be Mz − 1 or Mz keeping in mind the speed of

computation and the accuracy.

As shown in Table 2.1 using Nmax = 18 for Mz = 2, Mx = 1 results accurate within 7

significant digits and Nmax = 232 for Mz = 4,Mx = 3 results accurate within 12 significant digits
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Table 2.1 ϵreff for different basis functions
Mz Mx ϵreff Nmax(SCS) Nmax(MPS)

1 1 8.81 4 11

2 1 8.810041 18 42

2 2 8.8100416 52 61

3 2 8.810041567 130 140

3 2 8.8100415677 210 210

3 3 8.81004156779 243 255

4 3 8.81004156779 232 243

can be obtained (ϵreff = 8.81004156779). Also by using Mz = 2,Mx = 2 and Nmax = 52, an

ϵreff = 8.8100416 is obtained which is the same as [3]. The result highly depends on the value of

ϵ0 so results differ in the last four digits from [12]. We have used c = 299792458m/s[52] which is

slightly different from [53]. The approach can be further accelerated to any extent by using more

number of leading terms.

Figure 2.10(a) shows that rate of convergence decreases as we increase the number of basis

functions for small Nmax but by using higher order basis functions and more number of terms we

get even more accurate results. Figure 2.10(b) shows that the rate of convergence increases as we

use more number of leading terms.

The results for the MPS approach are as follows. Table 2.1 shows a combination of minimum

number of basis functions and minimum number of terms using which we can obtain the required

number of significant digits using our approach. As the table shows, using Nmax = 42 for Mz = 2,

Mx = 1 results accurate within 7 significant digits and Nmax = 255 for Mz = 3,Mx = 3 results

accurate within 12 significant digits can be obtained (ϵreff = 8.81004156779). Also by using

Mz = 2,Mx = 2 and Nmax = 61, an ϵreff = 8.8100416 is obtained which is the same as [3]. With

Mz = 4 and Mx = 3, ϵreff correct up to 12 significant digits (ϵreff = 8.81004156779) can be obtained

by truncating the summation at Nmax = 243 using the MPS formula. The result slightly depends on
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the value of ϵ0, so it differs from [12] in the last four digits. We have used c = 299792458m/s[52]

which is slightly different from [53]. The approach can be further accelerated to any extent by

using more number of leading terms.

From Figure 2.11(b) it is observed that the convergence of determinant of K matrix changes

from 1/Nmax using the direct summation to 1/N3
max using up to second leading term and finally to

1/N5
max using up to fourth leading term. Here, the result using four leading terms with Nmax = 106

is used as reference. Figure 2.13 shows that the rate of convergence of ϵreff increases as we use

more number of leading terms. Also Figures 2.11(b) and 2.13 show that the results are similar if

we use odd number of leading terms or the next even number of leading terms. This is because the

even leading terms have only sinusoidal functions and no constant terms and sinusoidal functions

converge faster than the constant terms using the special case which we have derived. Figure 2.12

clearly shows that the error in ϵreff decreases very rapidly when we consider more number of basis

functions for the longitudinal and the transverse current. But after a while it appears to saturate

because of the limits of double precision.
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Figure 2.11 Convergence of (a)Kzz
11 and (b)determinant of K matrix for Mz=1,

Mx=1 and β = 3k0 using different number of leading terms.
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Figure 2.13 Convergence of ϵreff using different number of leading terms with
Mz = 4,Mx = 3
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CHAPTER 3. Acceleration of Spectral Domain Approach for Generalized

Multilayered Shielded Microstrip using Two Super Convergent Series

3.1 Introduction

 

Figure 3.1 Shielded microstrip
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In the previous chapter two techniques named mid point summation formula and the super

convergent series have been applied to get fast convergence of infinite sine cosine series. The

convergence of the mid point summation decreases when the value of the argument is very small

and the super convergent series used in the previous chapter is converges fast for small values of

the argument. So these techniques individually will not be sufficient for the multilayered case as

the arguments of some terms are very small. We could use a combination of these techniques but

here we introduce a second type of super convergent series which has a faster convergence than

the MPS.

In this chapter, we propose an approach to speed up the SDA for the computation of the propa-

gation constant for any mode of a generalized shielded microstrip. We use an asymptotic approx-

imation to the Greens function and the Bessel’s function and two different super convergent sine

cosine series to accelerate the summation of the leading terms depending on the value of the argu-

ment. The higher order super convergent series (SCS) can be evaluated from the lower order ones

by using integration by parts. As a result we can obtain very accurate results for the propagation

constant of all the modes in a multilayered shielded microstrip in which the signal strip is at a

distance c from the side wall of the box as shown in Figure 3.1. In addition to this, closed form

expressions have been developed to dynamically choose the number of terms and the value of the

parameter p as a function of the argument, to adaptively obtain the best convergence of the second

type of super convergent series for a given accuracy and argument.

3.2 Multilayered Shielded Microstrip Line

The Figure 3.1 shows a multilayered shielded microstrip structure. The side walls are perfect

electric conductor (PEC) or perfect magnetic conductor (PMC). The mth layer is defined by ϵm,

µm, thickness Dm and km = ω
√
ϵmµm. A PEC metal strip of zero thickness and width 2w is

located at y = 0 plane with its center at x = c and extending infinitely in the z direction. The layers
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above the signal metal strip are numbered from 1 to q+1 and the layers below are numbered from

−1 to −l − 1. The top and bottom cover layers can be PEC, PMC or dielectric extending up to

infinity. Assuming the wave is propagating along the −z direction. The spectral domain immitance

approach (SDIA) is used to compute the Green’s function [54]. Using the SDIA and the boundary

conditions the x and z components of electric field on the metal interface can be written as [12]:

Ẽx(αn, h0) = Gxx(αn, β)J̃x(αn) +Gxz(αn, β)J̃z(αn), (3.1)

Ẽz(αn, h0) = Gzx(αn, β)J̃x(αn) +Gzz(αn, β)J̃z(αn), (3.2)

where αn = nπ/a, n = 1, 2, 3, ..., and

Gzz(αn, β) =
−1

α2
n + β2

(
α2
nZ

TE + β2ZTM
)

(3.3)

Gxz(αn, β) = Gzx(αn, β)

=
−αnβ

α2
n + β2

(
ZTM − ZTE

)
(3.4)

Gxx(αn, β) =
−1

α2
n + β2

(
β2ZTE + α2

nZ
TM
)

(3.5)

Zs = 1/[Y s
up(h0) + Y s

down(h0)], s = TM,TE. (3.6)

where Y s
up(h0) and Y s

down(h0) are calculated recursively by going down from the topmost layer and

going up from the bottommost layer using (3.7) and initial values Y s
up(hq) = ysq+1 and Y s

down(h−l) =

ys−l−1 [12], respectively.

Y s(hi∓1) = ysi
Y s(hi) + ysi tanh(γiDi)

ysi + Y s(hi) tanh(γiDi)
(3.7)

where the ’−’ sign is used while calculating Y s
up, i = q, q−1, ..., 2, 1 and the ’+’ sign is used while

evaluating Y s
down, i = −l,−l + 1, ...,−2,−1.

yTM
i =

jωϵi
γi

, yTE
i =

γi
jωµi

(3.8)
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γ2
i = β2 + α2

n − k2
i (3.9)

Entire domain basis like Chebyshev polynomials centered around x = c are used as basis

functions to expand the currents in the z and x direction, Jz and Jx, respectively [55],[44].

Jz(x) = (1/
√
1− r2)

Mz−1∑
i=0

aiTi(r) (3.10)

Jx(x) =
√
1− r2

Mx−1∑
i=0

biUi(r) (3.11)

where x = c+ wr, |r| < 1, Ti and Ui are the Chebyshev polynomials of the first and second kind,

respectively.

The Fourier transforms of the basis functions can be written as:

J̃x(αn) =

∫ a

0

dxJx(x) cos(αnx) =
wπ

δn

Mx−1∑
i=0

bi(i+ 1)Ji+1(δn)Re{(−j)ie−jαnc}

=
wπ

δn

Mx−1∑
i=0

bi(i+ 1)jiJ̃i+1(δn) (3.12)

J̃z(αn) =

∫ a

0

dxJz(x) sin(αnx) = −wπ
Mz−1∑
i=0

aiJi(δn)Im{(−j)ie−jαnc}

= wπ

Mz−1∑
i=0

aij
i−1J̃i(δn) (3.13)

where δn = αw and

J̃u(αn) = Ju (αnw) ·

 cos (αnc) , u odd

j sin (αnc) , u even
(3.14)

where Ju is the uth order Bessel function. Further, using the Galerkin method and taking the inner

product of (3.1) with the Fourier transform of the bases for the transverse current and of (3.2) with

the Fourier transform of the bases for the longitudinal current the following matrix equation is

obtained:  Kxx Kxz

Kzx Kzz


 A

B

 =

 0

0
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where A and B are vectors which are proportional to the coefficients ai and bi, respectively.

Ak = πwkjk−1ak−1 (3.15)

Bl = −πwjlbl−1 (3.16)

The elements of the K matrix can be written as:

Kef
kl = −1

4
δexδfxδk1δl1Z

TE
∣∣∣
n=0

+
∞∑
n=1

Gef (αn, β)

δ
δex+δfx
n

J̃k−δpz(αn)J̃l−δqz(αn) (3.17)

= −1

4
δexδfxδk1δl1Z

TE
∣∣∣
n=0

+
∞∑
n=1

F ef
kl (αn) (3.18)

where e, f ∈ x, z, k = 1, ..,Me, l = 1, ..,Mf , and

δpq =

 1 p = q

0 p ̸= q
(3.19)

The n = 0 term in (3.17) is taken care separately [12]. Finally, the propagation constant β can be

obtained by solving det[K] = 0.

3.3 Extraction of Asymptotic Terms

3.3.1 Asymptotic Approximation of the Green’s Function

The difference between the Green’s function for different structures with the same set of lay-

ers just above and below the signal strip lies in smaller values of αn [56]. Because for large n,

tanh(γiDi) ≈ 1. Let γiDmin = L where L depends on the accuracy required. e.g. for L = 20,

tanh(L) ≈ 1 with double precision accuracy and for L = 10 with single precision. For large n,

γi ≈ αn. Therefore,

αnDmin ≈ L

⇒Nmin = La/(Dminπ) (3.20)
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Figure 3.2 Three layered shielded microstrip with parameters
ϵr−2 = 1, , ϵr−1 = 10.2, , ϵr1 = 1, µri = 1, D−2 = 6.35mm, D−1 = .635mm,
D1 = .635mm, 2w = .635mm, a = 7.62mm, c = a/2.

Dmin is min(D−1, D1). In most cases the box width is about 10 times the thickness of layers so

Nmin will be a two digit number. Therefore for large n, Y s
up(h0) ≈ ys1 and Y s

down(h0) ≈ ys−1.

Also Figures 3.3(a) and 3.3(b) show that as the frequency increases beyond a few GHz the first

two asymptotic terms of the Green’s function as used in Chapter 2 are not good enough. Even the

third asymptotic term has to be included. It is very complicated to obtain an analytical result for

the third leading term. Therefore, a technique for numerical extraction of the higher order leading

terms was developed which can be very handy when the Green’s function becomes more complex

as it is very difficult to obtain an analytical expression even for the first and second leading terms

for the case with multiple metal lines in different layers.

As αn → ∞ keeping the first three terms in Taylor expansion the Green’s functions are ap-

proximated as [55], [13]:

Gxx ≈ Gxx0αnw(1− y1xx/α
2
n − y2xx/α

4
n) (3.21)

Gxz ≈ Gxz0(1− y1xz/α
2
n − y2xz/α

4
n) (3.22)

Gzz ≈
Gzz0

αnw
(1− y1zz/α

2
n − y2zz/α

4
n) (3.23)
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Figure 3.3 Convergence of Gzz using first, second and third leading terms for a
three layered shielded microstrip with parameters as shown in Figure
3.2 at β = 2k0 and a frequency of (a)1 GHz (b) 20 GHz.
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The coefficients Gef0 and y1ef can be determined analytically as given in Chapter 2 equations

(2.65)-(2.70). But we need to replace k1 by k−1 and k2 by k1 in these expressions to match the

notation in this chapter. It is known that the Green’s function is of the form:

Gef = G0(αn)[1− y1ef/α
2
n − y2ef/α

4
n − y3ef/α

6
n − ...] (3.24)

The coefficients y2ef and y3ef are determined by solving the two linear equations obtained on

substituting two different values of n in (3.24). But for this case only up to third leading term

are needed so (3.24) is truncated keeping the first three leading terms. The values of n should be

greater than Nmin so that they lie in the region where Gef depends only on the layers above and

below the signal strip. Figure 3.3(b) shows the convergence of Gzz using up to first, second and

third leading terms. Using first k leading terms Gzz converges as 1/n2k+1. This technique can

be easily extended to extract the leading term even when the expression for the Green’s function

becomes very complex.

3.3.2 Asymptotic Approximation of the Bessel’s Function

The series expansion for the Bessel’s function [45] is given in (2.71).

Ju(z)Jv(z) =
( 2

πz

){
A+ (−BC1

v − CC1
u)/8z + (−AC2

u +DC1
uC

1
v − AC2

v )/(8z)
2

+
[
B(C3

v + C1
vC

2
u) + C(C3

u + C1
uC

2
v )
]
/(8z)3 + [A(C4

u + C4
v

+ C2
uC

2
v )−DC3

uC
1
v −DC1

uC
3
v ]/(8z)

4
}

(3.25)

where the expression for A, B, C, D are given below:

A =
1

2

{
sin[2z − (u+ v)π

2
] + cos[

(u− v)π

2
]
}

(3.26)

B =
1

2

{
− cos[2z − (u+ v)π

2
]− sin[

(u− v)π

2
]
}

(3.27)

C =
1

2

{
− cos[2z − (u+ v)π

2
] + sin[

(u− v)π

2
]
}

(3.28)
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D =
1

2

{
− sin[2z − (u+ v)π

2
] + cos[

(u− v)π

2
]
}

(3.29)

Thus, using the asymptotic forms of the Bessel’s function and the Green’s function and keeping

terms up to 1/α6
n one can get:

F̃ ef
kl =

2Gef0

π(αnw)2

[
Ag + (−BgC

1
u − CgC

1
v )/(8αnw) + (−AgC

2
v +DgC

1
vC

1
u − AgC

2
u

− 64Agy1efw
2)/(8αnw)

2 +
(
Bg(C

3
u + C1

uC
2
v ) + Cg(C

3
v + C1

vC
2
u)− 64y1efw

2(−BgC
1
u

− CgC
1
v )
)
/(8αnw)

3 +
(
Ag(C

4
v + C4

u + C2
vC

2
u)−DgC

3
vC

1
u −DgC

1
vC

3
u − 64y1efw

2(−AgC
2
v

+DgC
1
vC

1
u − AgC

2
u)− 4096y2efw

4Ag

)
/(8αnw)

4
]

(3.30)

where g = o for u + v odd, e for u + v even. The expressions for Ag, Bg, Cg and Dg are given

below:

Ae =
1

2

[
− (−1)

3u+v
2 sin θ1 − (−1)

3u−v
2 +

(−1)
u+v
2

2
(sin θ3 + sin θ2) + (−1)

u−v
2 cos θ4

]
(3.31)

Be = Ce =
1

2

[
− (−1)

3u+v
2 cos θ1 − (−1)

u+v
2 +

(−1)
u+v
2

2
(cos θ2 + cos θ3)

]
(3.32)

De =
1

2

[
(−1)

3u+v
2 sin θ1 − (−1)

3u−v
2 − (−1)

u+v
2

2
(sin θ3 + sin θ2) + (−1)

u−v
2 cos θ4

]
(3.33)

Ao = −Do =
j

4
(−1)

u+v+1
2 (sin θ3 − sin θ2) (3.34)

Bo =− j

2

[(−1)
u+v−1

2

2
(cos θ2 − cos θ3) + (−1)

u−v−1
2 sin θ4

]
(3.35)

Co =− j

2

[(−1)
u+v−1

2

2
(cos θ2 − cos θ3)− (−1)

u−v−1
2 sin θ4

]
(3.36)

where θ1 = 2αnw, θ2 = 2αn(w − c), θ3 = 2αn(w + c) and θ4 = 2αnc.

∞∑
n=1

F ef
uv ≈

Nmax∑
n=1

[
F ef
uv − F̃ ef

uv

]
+

∞∑
n=1

F̃ ef
uv . (3.37)
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The infinite summation of F̃ ef
uv in (3.37) involves infinite summation of series of the form

∑∞
n=1

sin(nz)
nk

and
∑∞

n=1
cos(nz)

nk (k = 2, 3, 4, 5, 6...) which can be very accurately evaluated using two different

types of fast convergent series derived in the following section. The first term on the right hand

side of (3.37) can be evaluated directly. Thus the overall complexity for evaluation of the matrix

elements is reduced to order Nmax.

3.4 Fast Convergent Series

For any series of the form
∑∞

n=1 e
jnz/nk where k = 2, 3, 4, ... [34]:

∞∑
n=1

ejnz/nk = j

∞∑
n=1

∫ z

0

(
ejnz/nk−1

)
dz +

∞∑
n=1

1/nk (3.38)

Also it is known that:
∞∑
n=1

ejnz/n = − ln[2 sin(z/2)] + j(π − z)/2, 0 < z < 2π (3.39)

Using [47] the following expansion is obtained:

ln(sin z) = ln z − z2/6− z4/180− z6/2835− z8/37800

− z10/479001600....,−π < z < π (3.40)

The first term in right hand side of (3.38) is evaluated using the above expression and the second

term is calculated using the Riemann Zeta function [48] to obtain:
∞∑
n=1

sin(nz)

n2
= −z ln z +

∞∑
i=1

ciz
2i−1 (3.41)

where c1 = 1, c2 = 1/72, c3 = 1/14400, c4 = 1/1270080, c5 = 1/87091200. However, the above

fast convergent series converges very fast only for small values of z as shown in Figure 3.4. When

z is large enough the following fast convergent series [34] can be used.
∞∑
n=1

sin(nz)

n2
=

∞∑
n=1

sin(nz)

n2
[1− tanh(np)] +

p(π − z)

2
(3.42)

− π

p

∞∑
n=1

sinh[(2n− 1)π(π − z)/(2p)]

[(2n− 1)π/(2p)]2 sinh[(2n− 1)π2/(2p)]



www.manaraa.com

52

In order of get faster convergence the value of the parameter p is chosen depending on the value

of z so that when both summations in (3.42) are truncated they have similar order of errors. It

can be derived from the asymptotic forms of the two summations. The asymptotic form for each

term of the first summation can be written as 2e−2np/n2 and for the second one can be written as

4p[e−bnz/π − e−bn(2−z/π)]/[(2n− 1)2π] where bn = (2n− 1)π2/(2p). Because this formula is used

for z < π, therefore, for them to converge at the same rate the powers of the exponential terms

should be same. Therefore,

2Np = (2N − 1)πz/(2p) (3.43)

where N is the number of terms at which the two infinite summations on the RHS in (3.42) are

truncated. For large N , the parameter p is almost independent of N .

p ≈
√
πz/2 (3.44)

Figure 3.4 shows the relative error in the first and second types of FCS taking different number

of terms for different values of z. The figure shows the convergence of first type of FCS using first

5, 7 and 9 terms of the series and of the second type of fast convergent series for N = 5, 7, 9 and

11. From the figure it can be concluded that the first kind of fast convergent series converges faster

for values of z/π closer to 0 and the second type of FCS converges faster for value of z/π closer to

1 and results accurate upto at least 8 significant digits can be obtained by using less than 5 terms.

In order to obtain an accuracy of δ for a given z, p can be calculated using (3.44). Then using p

and given accuracy δ a formula to calculate N is derived:

N = ceil{[log10(1/δ)− k]/p}+ 1 (3.45)

where k is the power of n in the denominator in (3.38). Figure 3.5 shows the verification of the

formula using summation of sine series for k = 2 and k = 4 for different values of accuracy δ. As

a result when using (3.42) the rate of convergence can be further accelerated by choosing the value

of p and N dynamically for a given z and δ. Similar, fast convergent series for higher values of k
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are derived using integration (3.38) and contour integration. So the expression for p will remain

unchanged even for higher orders because the integration is done w.r.t. z and the expression for

adaptively choosing the value of N in (3.45) has already been shown to work for higher values of

k and the value of N will be even smaller as k increases. The code written to validate the results

in the paper was made to switch from first kind of FCS to the second at z = 1.

Table 3.1 β/k0 for the dominant mode in a two layered shielded microstrip for
different c at 1 GHz and other parameters as given in Figure 3.2

Normalized propagation constant

Nmax c = a/2 c = a/3 c = a/5 c = 2a/3

10 1.58812263 1.61882576 1.72652553 1.61882576

15 1.58814822 1.61872713 1.72656839 1.61872713

20 1.58814620 1.61871628 1.72656556 1.61871628

30 1.58818142 1.61874567 1.72659825 1.61874567

40 1.58818027 1.61874450 1.72659719 1.61874450

50 1.58818105 1.61874542 1.72659800 1.61874542

60 1.58818126 1.61874553 1.72659820 1.61874553

2000000 1.58818105 1.61874532 1.72659803 1.61874532

3.5 Numerical Results

A three layered shielded microstrip with parameters as shown in Figure 3.2 at 1 GHz was

used to validate the results and demonstrate the convergence of the leading term extraction, the

matrix elements, the ϵreff and the determinant. Figure 3.6 verifies the correctness of leading term

extraction as when k leading terms are used the difference F zz
44 − F̃ zz

44 is of the order of 1/nk+2.

From Figures 3.7(a) and 3.7(b) it is observed that the convergence of Kzz
44 and determinant of K

matrix changes from 1/Nmax using the direct summation to 1/N3
max using up to second leading term

and finally to 1/N7
max using up to fifth leading term.
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Table 3.2 β/k0 for different basis functions and Nmax=70 for first
five modes of the shielded microstrip with parameters
ϵr−1 = 8.875, ϵr1 = 1, µri = 1, f = 20GHz, D−1 = 1.27mm,
D1 = 11.43mm, 2w = 1.27mm, a = 12.7mm, c = a/2 at β = 2k0.

Normalized propagation constant

Mz Mx Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

2 2 2.7108347 1.2892179 1.1027109 0.9223126 0.7251113

3 3 2.7102057 1.2894955 1.1026366 0.9223134 0.7250996

4 4 2.7102058 1.2894526 1.1026366 0.9223133 0.7250996

5 5 2.7102057 1.2894526 1.1026366 0.9223133 0.7250996

5 5 2.7102057[12] 1.2894527[12] 1.1026366[12] 0.9223133[12] 0.7250996[12]

The results are similar if odd number of leading terms or the next even number of leading terms

are used as seen from Figures 3.7(a), 3.7(b), 3.8(a) and 3.8(b). This is because the even leading

terms do not have a constant term whose convergence is slow compared to the sinusoidal functions.

Figure 3.8(a) shows that using a larger number of basis functions decreases the convergence

w.r.t Nmax. But by using higher order basis and higher Nmax more accurate results are obtained.

Figure 3.8(b) shows the convergence of ϵreff as a function of Nmax for different leading terms using

Mz = 7, Mx = 7. Also it is observed that ϵreff converges faster as more number of leading terms

are used.

Table 3.1 shows a verification of the propagation constant obtained using the proposed ap-

proach for the same three layered shielded microstrip with different values of displacement of the

signal metal from the edge c and Nmax using Mz = 5, Mx = 5 and up to fifth leading terms.

The correctness of the results is verified using the SDIA without acceleration using Mz = 5,

Mx = 5 and Nmax = 2 × 106 which results in β correct within 7 significant digits. The value

of propagation constant obtained is correct within 9 significant digits using just 60 terms of the

infinite summation using the proposed approach. In order to obtain the same accuracy using

the SDIA without acceleration one will need to consider nearly 2 × 108 terms in the infinite
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Table 3.3 β/k0 for the dominant mode in a two layered shielded microstrip for
different c

Normalized propagation constant

Nmax c = a/2 c = a/3 c = a/5 c = 2a/3

5 1.5793 1.58 1.63 1.58

10 1.5793544 1.58 1.580 1.58

15 1.5793544 1.5797 1.5804 1.5797

20 1.5793544 1.57974 1.58041 1.57974

30 1.57935450 1.5797417 1.580414 1.5797417

40 1.57935450 1.57974176 1.58041436 1.57974176

50 1.57935450 1.57974176 1.580414362 1.57974176

60 1.579354501 1.579741762 1.580414362 1.579741762

2000000 1.57935450 1.57974176 1.58041436 1.57974176

summation. Also, it is observed that using just 10 terms the value of β obtained is correct up

to 4 significant digits, respectively, which is enough for most practical applications. The pro-

posed approach gives accurate results for the cases when the signal strip is displaced from the

center. The result for the c = a/3 and c = 2a/3 should be same by symmetry and that is

what is obtained using the proposed approach. Using more number of terms in the proposed

approach even more accurate values of β are obtained. Also using higher order leading terms

even faster convergence is obtained. The approach although seems to involve an approximation

for the basis functions but it has been verified to give results accurate up to 11 significant digits

ϵreff = 8.8100415749 using Mz = 5, Mx = 4 and Nmax = 300 for a shielded microstrip with param-

eters ϵr = 11.7, µr = 1, f = 4GHz, h = 3.17mm, w = 3.04mm, 2a = 34.74mm, d = 50mm

[12].

A shielded microstrip with parameters ϵr−1 = 8.875, ϵr1 = 1, µri = 1, f = 20GHz, D−1 =

1.27mm, D1 = 11.43mm, 2w = 1.27mm, a = 12.7mm, c = a/2 [12] was also used to validate

the results. Table 3.2 shows the numerical values of the normalized propagation constants for
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Figure 3.6 Convergence of (F zz
44 − F̃ zz

44 )α
3
n as function of n for β = 2k0 for

different number of leading terms.

the first five modes of a single layered shielded microstrip with above parameters using different

number of basis functions for the currents in the longitudinal and the transverse directions. It also

shows that using Mz = 5, Mx = 5 and Nmax = 70 the propagation constant for the first five

modes is obtained correct within 8 significant digits. In order to obtain this accuracy using the

conventional SDA nearly Nmax = 2× 107 terms of the infinite summation would be needed.

Table 3.3 shows the validity of the approach for a two layered shielded microstrip line with

parameters ϵr1 = 4, ϵr2 = 11.7, µr1 = µr2 = 1, h1 = 5µm, h2 = 500µm, w = 2µm, a = 50µm,

d = 40µm, f = 1 GHz for different values of displacement of the signal metal from the edge

c and Nmax using Mz = 5, Mx = 5 and up to fifth leading term. The correctness of the results

is verified using the conventional SDIA without acceleration. The value of propagation constant

obtained is correct within 9 significant digits using just 50 terms of the infinite summation using

the proposed approach. In order to obtain the same accuracy using the conventional SDIA one will
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Figure 3.7 Convergence of (a) Kzz
44 and (b) determinant of K matrix for Mz=4,

Mx=4 and β = 2k0 using different number of leading terms for the
three layered shielded microstrip with parameters as given in Figure
3.2 at 1 GHz.
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need to consider nearly 2 × 106 terms in the infinite summation. Also, it is observed that using

just 5 terms and 15 terms, respectively, the value of β obtained is correct up to 5 and 7 significant

digits, respectively, which is enough for most applications in semiconductors.
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ters as given in Figure 3.2 at 1 GHz.
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CHAPTER 4. Equivalent Model for Shielded Microstrip Transmission

Lines over Lossy Layered Substrates

In the previous chapter we proposed a fast and accurate approach to obtain the effective medium

parameters parameters for a multilayered shielded microstrip. In this chapter, we use this approach

to develop an equivalent model for a multilayered lossy shielded microstrip transmission line by re-

placing the layered media below the signal strip with a single effective medium leaving the top part

as it is there by retaining the inhomogeneity of the medium. The inhomogeneity is maintained by

keeping the area above the transmission line intact. This is very helpful when analyzing the inter-

action between the devices and components located in different layers in an interconnect structure.

Also, it can be integrated with the Agilent’s Advanced Design Systems (ADS) Momentum module

where a layered structure can be replaced with a single equivalent medium there by improving the

mesh uniformity and hence reducing the computation time. The proposed equivalent model for the

shielded microstrip transmission line on layered media is obtained by replacing the lossless, con-

stant loss tangent or the layers with low finite conductivity with a single layer equivalent medium

with parameters ϵreq, equivalent loss tangent, σreq, respectively. The results show that this model

is frequency independent for layered structures when the given frequency and frequency of opera-

tion are less than the transition frequency (i.e. the frequency at which there is a sudden change in

the equivalent dielectric constant (ϵreq)). For frequencies higher than the transition frequency the

equivalent model is not frequency independent but it gives good results for the higher order mode

although it is derived using the dominant mode. Also it is seen that at low frequency ϵreq depends

on the layers near to the signal metal but at higher frequencies it depends on the layer with the
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highest value of ϵr irrespective of its location w.r.t to the metal strip.

4.1 Equivalent Model

The equivalent model consists of modeling the layered structure with a single layer such that

the propagation constant for the two structures is the same for the dominant mode at the testing

frequency (i.e. the frequency at which the model is evaluated). The thickness of equivalent layer

is assumed to be equal to the sum of the thickness of each layer if all are lossless or the thickness

of the layer with finite conductivities is much smaller than the skin depth. If the thickness of

some layers is larger than the skin depth, the process of choosing the thickness is outlined later. A

reverse process of root finding by Muller’s method is used to evaluate the ϵreq which gives the same

value of the propagation constant for the dominant mode as the original layered structure. µreq is

assumed to be 1.

Figure 4.1(a) shows the cross section of a multi layered shielded microstrip which consists of

a multi layer microstrip line enclosed in a perfect electric conductor (PEC) box of width a. Each

layer has a thickness hi complex dielectric constant ϵri. Non zero imaginary part means the layer

is lossy. It is infinitely long in the z-direction. The metal strip of width 2w located on top of the

dielectric layers is also assumed to be a zero thickness PEC and can be located anywhere on the

surface depending on the value of c. Figure 4.1(b) shows the equivalent model of this layered

shielded microstrip where the layered structure is replaced with a single layer of thickness equal

to the sum of thickness of all the layers and ϵr = ϵreq which is obtained using the method proposed

above.

We have used the spectral domain immitance approach (SDIA) [54], [55] outlined and accel-

erated in the last chapter to evaluate the propagation constants. Chebyshev polynomial are used as

the basis functions to expand the unknown currents in the transverse and longitudinal directions.

Although the spectral domain approach (SDA) is computationally intensive but by using acceler-
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 (a) Multilayered shielded microstrip

 (b) Equivalent single layered shielded microstrip

Figure 4.1 (a) A multi layered shielded microstrip with air above the signal metal
(b) Equivalent single layer model of the layered microstrip with air
above the signal metal.
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Figure 4.2 A shielded microstrip with (a) MIS (Metal Insulator Semiconductor)
Structure (b) MIMS (Metal Insulator Metal Semiconductor) Structure
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Figure 4.3 (a) λg/λ0 (b) α (dB/mm) as a function of frequency
for a shielded MIS transmission line with parameters
µr = 1, h1 = 1µm, h2 = 250µm, w = 80µm, a = 1cm, d = 1.249mm,
c = a/2, ϵr1 = 4, ϵr2 = 12, σ1 = 0 and σ2 = 5, 1000 and 10000 S/m.
The points are results from [1].
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ated SDA the speed can be increased by nearly five orders of magnitude [49], [57] as shown in the

last chapter. The SDIA was validated for metal insulator semiconductor (MIS) structure as shown

in Figure 4.2(a) for different values of conductivity of the semiconductor as shown in Figure 4.3.

Also it was validated for the metal insulator metal semiconductor (MIMS) structure as shown in

Figure 4.2(b) for different thicknesses (t) of the metal layer as shown in Figure 4.4.

The effect of varying the conductivity of the semiconductor in a shielded MIS structure with

parameters as in Figure 4.2(a) was studied using the SDIA. Figure 4.3(a) shows the normalized

guided wavelength (λg = 2π/Re(β)). β is the complex propagation constant. Figure 4.3(b) shows

the attenuation constant α (in dB/mm) as a function of frequency for σ2=5, 1000 and 10000 S/m.

The results show that as the conductivity of the semiconductor increases the guided wavelength

will first decrease and then increase because of the transition from lossy dielectric to skin effect

region (i.e. when the skin depth becomes less than the thickness of the layer). Also the attenuation

first increases to a maximum and then again goes to zero as σ2 approaches infinity i.e. the semi-

conductor layer acts as a perfect electric conductor, because of the same reason. Our results are in

agreement with [1] as shown by the circles, squares and ’+’ signs. The effect of the thickness of

the metal layer in a MIMS structure as shown in Figure 4.2(b) with parameters as in Figure 4.4 was

also studied using the SDIA. Figures 4.4(a) and 4.4(b) show the normalized β and the attenuation

constant α (in dB/mm), respectively. Higher the thickness of the metal layer the less penetrable

it is for the field lines and so the contribution of the semiconductor layer below the metal layer

becomes smaller and smaller. Also as the frequency increases the skin depth decreases so even

very small thickness of metal become impenetrable and the effect of the layers below it is negligi-

ble and the result approaches that for a single layered shielded microstrip formed by replacing the

metal layer with a PEC. Also, from Figure 4.4(b) it can be concluded that smaller the thickness of

the strip higher is the attenuation constant and once the thickness becomes comparable to the skin

depth the attenuation becomes nearly constant and approaches that for the case where thickness of

metal layer in infinite.
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Figure 4.4 (a)β (b)α (dB/mm) as a function of frequency for
a shielded MIMS transmission line with parameters
µr = 1, h1 = 1µm, h2 = t, h3 = 250µm, w = 80µm, a = 1cm,
d = 1.249mm, c = a/2, ϵr1 = 4, ϵr3 = 12, σ1 = 0, σ2 = 5.8 × 107,
σ3 = 5S/m and thickness t = 0, .05µm, .1µm, 1µm, 10µm,∞.
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Figure 4.5 Comparison of ϵreff as a function of frequency on reordering
the layers for a two layered shielded microstrip with parameters
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a = 12.7mm, d = 11.43mm, c = a/2.

4.1.1 Extending the Equivalent Model for the Lossy Case

4.1.1.1 Constant Loss Tangent Case

In case some of the layers are dielectrics with constant loss tangents we can extend the same

idea of the equivalent model by using complex dielectric constant. (ϵri = Re(ϵri)(1 − j tan δi)

where tan δi loss tangent of the particular layer). Then by using the same approach we can reduce

the layered lossy structure into a single layer with thickness equal to the sum of all the layers and

ϵreq and equivalent loss tangent such that they result in the same value of complex ϵreff (β2 = ϵreffk
2
0)

as the original layered structure at the testing frequency using the SDIA.
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Figure 4.6 Comparison of ϵreff as a function of frequency for two layered shielded
microstrip with air above the signal metal (solid line) and (circles,
dotted line) the equivalent models at 1GHz and 20GHz (i.e. close to
transition frequency) with h = h1 + h2, ϵreq = 9.5057 at 1GHz and
ϵreq = 10.5275 at 20GHz, µreq = 1 for both. The parameters of the
layered microstrip are same as in Figure 4.5.

4.1.1.2 Constant Conductivity Case

If some of the layers have a finite conductivity (σi) then we can extend our equivalent model

by using complex dielectric constant (ϵri = Re(ϵri) − jσi/(ωϵ0)) where σi is the conductivity

of the particular layer). It is worth to note that the imaginary part of the dielectric constant is

inversely proportional to the testing frequency as opposed to the case with constant loss tangent

where it was constant. If the thickness of the conductive layer is more than the skin depth then the

contribution of this layer to the thickness of the single equivalent layer must be chosen as shown

in the numerical results. Thus using the same approach as for the lossless case we can model a

multilayered structure with a single layer with ϵreq and σeq such that they give the same value of

complex ϵreff at that frequency.
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4.2 Numerical Results

4.2.1 Validation

Figures 4.5 and 4.7 show the normalized propagation constant squared, which is the same as

the ϵreff, as a function of frequency for two layered shielded microstrip with dimensions of the

order of few mm and two and three layered shielded microstrips with dimensions of the order of

a few µm. From these figures we can come to the following three conclusions. Firstly, in the low

frequency range the value of ϵreff and hence ϵreq highly depends on the layers nearer to the signal

metal and not on the layer with high value of ϵr because of the near field effect. Secondly, at very

high frequency the ϵreff is close to the ϵr for the layer with the maximum value of ϵr irrespective of

its location w.r.t. the signal metal. This is because most of the energy is confined to the layer with a

high value of ϵr when the wavelength becomes comparable to the thickness of the layer. This result

is further amplified by the results for the case in Figure 4.7(b) where the layer with the highest ϵr

is the third one from the signal strip. Thirdly, the transition frequency i.e. the frequency at which

there is a steep rise in the propagation constant highly depends on the thickness of the layers. The

smaller the thickness of the layers, the higher is the transition frequency.

The concept of the equivalent model was numerically validated for three different layered

shielded microstrips as shown in Figures 4.6, 4.8(a) and 4.8(b). In the SDIA the infinite se-

ries for the elements of the Galerkin matrix was truncated at N = 2000 and Chebyshev basis

with two terms each were used to expand the current in the longitudinal and transverse direction.

ϵ0 = 8.854 × 10−12 F/m was used and an ϵreq of 9.5057 at 1GHz, 10.5275 at 20GHz for the case

in Figure 4.6 and an ϵreq of 4.8317 and 8.6485, respectively at 1GHz were obtained for the cases in

Figures 4.8(a) and 4.8(b), respectively. Thus the equivalent model is very accurate for frequencies

below the transition frequency if the testing frequency is much lower than the transition frequency.

But if the testing frequency is close to the transition frequency this equivalent model is not fre-

quency independent as shown in Figure 4.6 for the case when the testing frequency is 20GHz.
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Table 4.1 Comparison of the normalized propagation constant for higher order
modes in two layered shielded microstrip with the higher order modes
of the equivalent model

Mode 1 Mode 2 Mode 3

2 layer 3.0495 1.9396 .9967

1 layer Equiv. 3.0495 1.9294 .9856

Table 4.1 shows the normalized propagation constant for higher order modes calculated using

a two-layer structure with parameters same as in Figure 4.6 and an equivalent single layer model

at 20 GHz which has the same propagation constant for the dominant mode and ϵreq = 10.5275,

µreq = 1 and h = 2.54mm. It is observed that the difference in the propagation constant for

the higher order mode is less than 1% which is accurate enough for most practical applications.

Therefore, for frequencies higher than the transition frequency, when the higher modes also start

existing the equivalent model is not frequency independent but it gives accurate results for the

propagation constant for the higher order modes.

Figures 4.9 and 4.10 show the validation of the equivalent model for different thickness of the

layers and different widths of the metal strip. As as the thickness of the first layer approaches zero

the ϵreq approaches the ϵr2 and vice versa. Also as the width of the strip increases the ϵreq approaches

that for a parallel plate capacitor model which is equal to 5.9618 for the cases in Figure 4.10.

The equivalent model was further validated by plotting the parameters of the equivalent medium

such as ϵreq, loss tangent tan δ and the σeq as a function of testing frequency for the lossless, con-

stant loss tangent and the constant conductivity cases.

4.2.1.1 Lossless Case

Figures 4.11(a) and 4.11(b) further validate that when the dimensions are in the range of mi-

crons the transition frequency is of the order of a few hundred GHz for the lossless case so the
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equivalent model can be easily used to reduce several lossless dielectric layers into a single dielec-

tric layer. The change in ϵreq is found to be less than .0015% up to 100 GHz.

4.2.1.2 Constant Loss Tangent Case

Figures 4.12 and 4.13 show that for the constant loss tangent case the variation in ϵreq and

equivalent loss tangent is less than .1% with change in testing frequency up to 100 GHz. Also, at

frequencies higher than the transition frequency the ϵreq and equivalent loss tangent depend on the

dielectric constant and the loss tangent of the layer with largest value of ϵr.

4.2.1.3 Constant Conductivity Case

Figure 4.14 show that higher values of conductivity of the layers nearer to signal metal results

in a higher value ofϵreq for lower frequencies but the effect decreases with increase in frequency.

Figure 4.15 shows that at low frequencies the σeq highly depends on the conductivity of the layers

nearer to the signal metal. The proposed equivalent model is almost frequency independent for

frequencies up to few GHz.

For the case when the layers are lossy with finite conductivity we see a very interesting phe-

nomena. In this case, we observe two transition frequencies. The first transition frequency depends

on the layer with the largest σi/ϵri ratio irrespective of where the layer is located with respect to

the signal strip as can be observed from Figures 4.15-4.16. Also, this transition occurs the real and

imaginary part of the ϵreff become equal i.e. when σi/(ωϵ0ϵri)=1. The first transition frequency is

also independent of the width of the different layers as seen by comparing Figures 4.20(b), 4.21(b)

and 4.14(b), 4.15(b). The second transition frequency corresponds to the transition frequency in

the lossless multilayered shielded microstrip which depends on the thickness of the layers. Be-

tween the first and second transition frequency region the near field effect dominates and the value

of ϵreq depends largely on the ϵr of the layers nearest to the signal metal due to near field effect.

However, above the second transition frequency the ϵreq depends only on the layer with the highest
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value of ϵr. The second transition frequency (fT2) highly depends on the thickness of the layer

with the highest value of ϵr and the transition occurs when it becomes comparable to half of the

wavelength [42]. From Figures 4.14, 4.20 and 4.16 we can easily conclude that fT1 just depends

on the layer with the highest value of σi/ϵri irrespective of its location w.r.t to the signal metal

however the value of ϵreq does depend on the parameters of the layer which is nearest to the signal

metal. The first transition frequency (fT1) can be obtained by the following expression:

fT1 = (σri/ϵri)max/(2πϵ0) (4.1)

Therefore, the model can be used effectively in three distinct regions formed by the two tran-

sition frequencies where the value of the ϵreq is almost constant. However, the model will have to

be analyzed in more detail when the conductivity is very high or the layer with the highest value

of ϵri is very thick so that fT1 > fT2. Figures 4.18(a) and 4.18(b) show the plot of the ϵreq and

ϵreff as a function of frequency for a two layered lossy shielded microstrip. Also, one can verify

the formula for first transition frequency as for the parameters in Figure 4.18(a) it lies around 7.02

MHz and for the parameters in 4.18(b) it lies around 15.37 GHz. Also, Figures 4.19(a) and 4.19(b)

show that the σeq and σeff will be frequency independent in these three regions and have the same

transition frequencies as the ϵreff.

Therefore, the model is frequency independent three distinct regions between the two transition

frequencies but it is frequency dependent for frequencies very close (nearly 5%) to the transition

frequencies.

The transition in σeq and ϵreq occur at nearly the same frequency as seen from Figures 4.16-4.20.

Figure 4.14 show that higher values of conductivity of the layers nearer to signal metal results in

a higher value of ϵreq for lower frequencies but the effect decreases with increase in frequency.

Figure 4.15 shows that at low frequencies the σeq highly depends on the conductivity of the layers

nearer to the signal metal. Also the σeff at high frequency depends on the σi of the layer with the

highest value of ϵri.
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4.2.2 Thickness

Table 4.2 ϵreff vs h2/δ2 for the MIS structure

h/δ Re(ϵreff) Im(ϵreff) Abs(ϵreff)

1 39.7503 -20.3706 44.6660

2 31.7358 -26.2836 41.2067

3 31.5750 -25.0388 40.2979

4 31.7346 -25.0803 40.4488

5 31.7213 -25.0978 40.4492

6 31.7198 -25.0953 40.4465

7 31.7202 -25.0953 40.4468

∞ 31.7202 -25.0953 40.4468

Figure 4.22 and Table 4.2 show that using n skin depths we can obtain approximately n − 1

significant digits in the value of the effective dielectric constant for a MIS structure. This can also

be concluded from the fact that magnitude of current decreases by 1/e ≈ .37 for each skin depth.

Also the layers below the semiconductor will have negligible effect on the effective medium if the

semiconductor layer is thick enough (i.e. of the order of few skin depths) and can be neglected.

Therefore, the equivalent thickness is assumed to be the sum of thickness of all the layers above

the layer with finite conductivity and n times the skin depth of the conductive layer if we need

n− 1 significant digits in the equivalent medium parameters.
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Figure 4.7 Comparison of ϵreff as a function of frequency on reordering the layers
for (a) two layered shielded microstrip with air on top and parameters
µr = 1, h1 = h2 = 5µm, w = 2µm, a = 50µm, d = 40µm, c = a/2
(b) three layered shielded microstrip with air on top and parameters
µr = 1, h1 = h2 = h3 = 5µm, w = 2µm, a = 55µm, d = 40µm and
ϵr1 = 4, ϵr2 = 11.7, ϵr3 = 2.
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(b) Comparison of ϵreff with the equivalent model

Figure 4.8 Effective dielectric constant ϵreff as a function of fre-
quency for (layered) two layered shielded microstrip
with air above the signal metal and parameters
µr = 1, h1 = h2 = 5µm, w = 2µm, a = 50µm, d = 40µm, c = a/2
for the equivalent models at 1GHz with h = h1 + h2

for (a) ϵr1 = 4, ϵr2 = 11.7, ϵreq = 4.8317 (b)
ϵr1 = 11.7, ϵr2 = 4, ϵreq = 8.6485.



www.manaraa.com

78

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

h
1
/h

ε
r

 

 

ε
req
for ε

r1
=11.7,ε

r2
=4

ε
reff
for ε

r1
=11.7,ε

r2
=4

ε
req
for ε

r1
=4,ε

r2
=11.7

ε
reff
for ε

r1
=4,ε

r2
=11.7

Figure 4.9 Variation of ϵreq, ϵreff with h1/h for two, two layered shielded
microstrip with air above the signal metal and parameters
µr = 1, w = 2µm, a = 50µm, d = 40µm, c = a/2 for the equiv-
alent models at 1GHz with h = h1 + h2 = 10µm, ϵr1 = 4, ϵr2 = 11.7
and ϵr1 = 11.7, ϵr2 = 4, respectively.
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Figure 4.10 Variation of ϵreq, ϵreff with width of signal metal for a two layered
shielded microstrip with air above the signal metal and parameters
µr = 1, h1 = h2 = 5µm, a = 1mm, d = 40µm, c = a/2 for the
equivalent models at 1GHz with h = h1+h2 and ϵr1 = 11.7, ϵr2 = 4
and by reversing the layers.
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Figure 4.11 ϵreff and ϵreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parameters
µr = 1, h1 = h2 = 5µm, w = 2µm, a = 50µm, d = 40µm, c = a/2
with h = h1 + h2 for (a) ϵr1 = 11.7, ϵr2 = 4 (b) ϵr1 = 4, ϵr2 = 11.7.
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(a) ϵreff and ϵreq vs testing frequency
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(b) ϵreff and ϵreq vs testing frequency

Figure 4.12 ϵreff and ϵreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parameters
µr = 1, h1 = h2 = 5µm, w = 2µm, a = 50µm, d = 40µm, c = a/2
with h = h1 + h2, ϵr1 = 4, ϵr2 = 11.7 and loss tangents (a)
tan(δ1)=.005, tan(δ2)=.05 (b) tan(δ1)=.05, tan(δ2)=.005.
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Figure 4.13 Same as Figure 4.12, imaginary parts are represented as loss tangent.
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(a) ϵreff and ϵreq vs testing frequency
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(b) ϵreff and ϵreq vs testing frequency

Figure 4.14 Real parts of ϵreff and ϵreq as a function of test-
ing frequency for two layered shielded microstrip
with air above the signal metal and parameters
µr = 1, h1 = h2 = 5µm, w = 2µm, a = 50µm, d = 40µm, c = a/2
with h = h1 + h2, ϵr1 = 4, ϵr2 = 11.7 and conductivities (a) σ1=10
S/m, σ2=1 S/m (b) σ1=1 S/m, σ2=10 S/m.
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Figure 4.15 Same as Figure 4.14, imaginary parts are represented as σreff and
σreq.
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(a) ϵreff and ϵreq vs testing frequency
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(b) ϵreff and ϵreq vs testing frequency

Figure 4.16 ϵreff and ϵreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parameters
µr = 1, h1 = h2 = 5µm, w = 2µm, a = 50µm, d = 40µm, c = a/2
with h = h1 + h2, ϵr1 = 4, ϵr2 = 11.7 and conductivities (a)
σ1=0.001 S/m, σ2=0 (b) σ1=0, σ2=.001 S/m.
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(a) σreff and σreq vs testing frequency
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(b) σreff and σreq vs testing frequency

Figure 4.17 σreff and σreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parameters
µr = 1, h1 = h2 = 5µm, w = 2µm, a = 50µm, d = 40µm, c = a/2
with h = h1 + h2, ϵr1 = 4, ϵr2 = 11.7 and conductivities (a)
σ1=0.001 S/m, σ2=0 (b) σ1=0, σ2=.001 S/m.
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(a) ϵreff and ϵreq vs testing frequency

 

(b) ϵreff and ϵreq vs testing frequency

Figure 4.18 ϵreff and ϵreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parameters
µr = 1, w = 2µm, a = 50µm, d = 40µm, c = a/2 with h = h1+h2,
ϵr1 = 4, ϵr2 = 11.7 and (a) σ1=1 S/m, σ2=10 S/m, h1 = h2 = 5µm
(b) σ1=1/640 S/m, σ2=.001 S/m, h1 = 5µm, h2 = 5µm
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Figure 4.19 σreff and σreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parame-
ters µr = 1, w = 2µm, a = 50µm, d = 40µm, c = a/2 with
h = h1 + h2, ϵr1 = 4, ϵr2 = 11.7 and (a) σ1=.001 S/m, σ2=10 S/m,
h1 = h2 = 5µm (b) σ1=1 S/m, σ2=10 S/m, h1 = 5µm, h2 = 5µm
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(a) ϵreff and ϵreq vs testing frequency
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(b) ϵreff and ϵreq vs testing frequency

Figure 4.20 ϵreff and ϵreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parame-
ters µr = 1, w = 2µm, a = 50µm, d = 40µm, c = a/2 with
h = h1 + h2, ϵr1 = 4, ϵr2 = 11.7 and (a) σ1=.001 S/m, σ2=10 S/m,
h1 = h2 = 5µm (b) σ1=1 S/m, σ2=10 S/m, h1 = 5µm, h2 = 500µm
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Figure 4.21 σreff and σreq as a function of testing frequency for two layered
shielded microstrip with air above the signal metal and parame-
ters µr = 1, w = 2µm, a = 50µm, d = 40µm, c = a/2 with
h = h1 + h2, ϵr1 = 4, ϵr2 = 11.7 and (a) σ1=.001 S/m, σ2=10 S/m,
h1 = h2 = 5µm (b) σ1=1 S/m, σ2=10 S/m, h1 = 5µm, h2 = 500µm
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Figure 4.22 Relative error in β − jα vs thickness of semicon-
ductor layer in terms of number of skin depths for
a shielded MIS transmission line with parameters
µr = 1, h1 = 1µm, h2 = 250µm, w = 80µm, a = 1cm, d = 1cm,
c = a/2, ϵr1 = 4, ϵr2 = 12, σ1 = 0 and σ2 = 10000 S/m at 100GHz.
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CHAPTER 5. Approaches to Handle Finite Thickness and Conductivity of

Metal Lines

There are several approaches which have been proposed for dealing with the finite thickness of

metal lines. But in order to incorporate them into the spectral domain approach one has to be very

careful about the choice of the basis functions. This is because while using these approximations

one needs to subtract a constant term from the Green’s function, therefore, basis functions with

convergence 1/
√
αn or slower will lead to a nonconvergent infinite summation in the elements of

the MoM matrix. Therefore, Chebyshev polynomial, sine cosine basis functions, etc. will lead to

a non convergence in the elements of the MoM matrix. However, basis like triangular basis which

converge as 1/α2
n are more suitable for the currents in the x direction. While for the longitudinal

currents one can also use pulse basis although triangular basis will have a faster convergence.

Figure 5.1 shows the triangle-triangle basis, the pulse-triangle basis and the Chebyshev basis.

5.1 Current Basis Functions

5.1.1 Chebyshev Polynomial

The formulation for the Chebyshev basis functions has been described in detail in Chapter 2.

5.1.2 Pulse-Pulse Basis

Divide the strip into N = Mz parts each of width T = 2w/N as shown in Figure 5.1. Both

the longitudinal and the transverse current on the strip can be written as a linear combination of
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pulse basis functions. The Fourier transform for the pth (p = 1, 2, ...N ) pulse function for the

longitudinal and transverse current can be written as:

J̃p
z (δw) = 2w/δw sin(δw/N) sin{α[c− w + (p− 1)2w/N + w/N ]} (5.1)

J̃p
x(δw) = 2w/δw sin(δw/N) cos{α[c− w + (p− 1)2w/N + w/N ]} (5.2)

where δw = αw.

5.1.3 Pulse-Triangle Basis

Divide the strip into N = Mx = Mz−1 parts each of width T = 2w/N as shown in Figure 5.1.

The longitudinal current on the strip can be written as a linear combination of pulse basis functions

and the transverse current as a linear combination of triangle basis functions. The Fourier transform

for the pth basis can be written as:

J̃p
z (δw) = 2w/δw sin(δw/N) sin[α{c− w + (p− 1)2w/N + w/N}] (5.3)

J̃p
x(δw) = 2w/δ2w[sin(δw/N)]2 cos[α(c− w + 2pw/N)] (5.4)

5.1.4 Triangle-Triangle Basis

In the triangular basis for the longitudinal current we need to include two half triangles to

increase the convergence because of the edge singularity in the current on the two ends of the strip.

Divide the strip into N = Mz − 2 parts each of width T = 2w/N as shown in Figure 5.1. Choose

Mx = Mz − 2. Both the longitudinal and the transverse current on the strip can be written as a

linear combination of triangle basis functions. The Fourier transform for the pth (p = 1, 2, ...N )

triangle function for the longitudinal and transverse current can be written as:

J̃z(δw) = 2w/δ2w[sin(δw/N)]2 sin[α(c− w + 2pw/N)] (5.5)
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J̃x(δw) = 2w/δ2w[sin(δw/N)]2 cos[α(c− w + 2pw/N)] (5.6)

The Fourier transform of the first basis for the longitudinal current can be written as:

J̃0
z (δw) = 2w2/N/δ2w{α cos[α(c−w)]+N/(2w)(sin[α(c−w)]− sin[α(c−w+2w/N)])} (5.7)

and for the last one can be written as:

J̃N+1
z (δw) = 2w2/N/δ2w{α cos[α(c+w)]+N/(2w)(sin[α(c+w)]−sin[α(c+w−2w/N)])} (5.8)

Figure 5.2 and 5.3 show the convergence of the triangle-triangle and pulse-triangle and the

Chebyshev polynomials basis, respectively. It can be seen that Chebyshev polynomial being an

entire domain basis has a very fast convergence compared to the subdomain basis. Also, the

triangle-triangle basis has a good convergence although it is a subdomain basis and very accurate

results up to three digits can be obtained using nearly six basis functions and about 1000 terms of

the summation.
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Figure 5.1 Basis Functions (top) Triangle-triangle basis (middle) Pulse-triangle
basis (bottom) Chebyshev polynomial
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Figure 5.2 Convergence of the triangle-triangle and the pulse-triangle ba-
sis for a single layered shielded microstrip with parameters
ϵr−1 = 8.875, ϵr1 = 1, µri = 1, f = 20GHz, D−1 = 1.27mm,
D1 = 11.43mm, 2w = 1.27mm, a = 12.7mm, c = a/2 at β = 2k0.
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layered shielded microstrip as in Figure 5.2
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5.2 Including the Finite thickness and Conductivity Approximations into

the Spectral Domain Approach

Several approaches to approximate the finite thickness and conductivity of metal lines have

been proposed in [58]. Although, R-card approximation is good for small thickness and impedance

boundary condition approximation works well for thickness much greater than skin depth. It is

difficult to get an accurate approximation for the intermediate thickness.

5.2.1 Resistive Thin Sheet Approximation (R-card)

We know that for the volume current Jv:

Jv = σsE (5.9)

If the thickness of the strip is very small compared to the skin depth we can write Jv = Jg/t.

Eg = RsJg (5.10)

where Rs = 1/(σst) Jg is the surface current density and g ∈ (x, z).

5.2.2 R-Card with Finite Thickness (Tedjini’s Approximation)

In [59] a model to approximate the finite thickness has been proposed if the approximate cur-

rent distribution in the strip is known in the vertical direction. This model has been utilized for

superconducting lines by Tounsi et al. [60]. In the spectral domain approach after using the bound-

ary conditions the Fourier transform of the current and the electric field are related as:

J̃(αn) = Y (αn, β)Ẽ(αn) (5.11)

Consider an elementary strip located at a distance s from the bottom surface of the signal strip,

having a thickness ds and conductivity σs as shown in Figure 5.4. If the current distribution
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Figure 5.4 A three layered shielded microstrip with single metal strip of thick-
ness t and conductivity σs. ϵr1 = 4; σ1 = 0; ϵr2 = 12; σ2 = 5
S/m; µr1 = µr2 = 1; σs = 5.88 × 107 S/m, t = 1µm, h1 = 1µm,
h2 = 250µm; w = 80µm; a = 4000µm; d = 3200µm; c = a/2.
Strip is divided into elementary strips with thickness ds and located
at a distance s from the bottom of the strip..

(normalized with thickness of the strip) in the vertical direction is f(s). Then the current dJ̃(αn, s)

in the strip ds can be written as:

dJ̃(αn, s) = J̃(αn)f(s)ds (5.12)

We know that the Greens function decreases exponentially in the vertical direction [56]. Therefore,

at the y=constant plane at a distance s from the bottom of the strip the relationship between the

differential current (dJ̃(αn, s)) and the differential electric field can be written as:

dJ̃(αn, s) = Y (αn, β)e
γnsdẼ(αn, s) (5.13)

Integrating over the width of the strip we obtain:

J̃(αn) = Y (αn, β)S(αn)Ẽ(αn) (5.14)
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where

S(αn) =
[ ∫ t

0

f(s)e−γnsds
]−1

(5.15)

where

γ2
n + β2 + α2

n = ϵµω2 (5.16)

ϵ and µ are the permittivity and permeability of the material in which the strip is located. Thus, we

can write

[Ẽ] = [Gs][J̃ ] (5.17)

where

[Gs] = ([Y ][S])−1 (5.18)

For broader strips in a microstrip where w/h >> 1 and t > δ the current can be assumed to be

concentrated on the lower surface of the strip and the expression for the distribution function can

be written as [59]:

f(s) = (1/t)e(−s/δ) (5.19)

For strips with smaller w/h ratio the current densities on the top and the bottom surface are com-

parable and can be approximated by [59]:

f(s) = (1/t) cosh[(s− t/2)/δ]/ cosh[t/(2δ)] (5.20)

Therefore, we can include the effect of finite thickness by multiplying the Green’s function for

the zero thickness case by the transformation term [S]−1. In order to include the effect of finite

conductivity of the metal line, we assume that the conductivity is very large so that the magnetic

current can be neglected. Then, the tangential component of the electric field can be written as:

Ẽg = J̃vg/σs = 1/(σst)Jg (5.21)

where Jvg is the volume current density and g ∈ (x, z).
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5.2.3 Impedance Boundary Condition (IBC) Approximation

This approximation was first proposed by Itoh in [9]. Several generalized IBC approximations

have also been proposed but it is not feasible to include them in the SDA [61],[62]. It works well

when the thickness of the strip is greater than about three times the skin depth. It is based on the

fact that the current decays exponentially from the surface of the strip to inside the metal and drops

down to 37% at one skin depth from the surface. So for a thick strip we can approximate this

with a strip of width equal to the skin depth carrying a uniform current density equal to that on

the surface. Also, it assumes that the thickness of the strip is much smaller than its width. Using

Maxwell’s equations we can obtain:

Ex = ZsHz (5.22)

where Zs = (1 + j)/(σδ), δ =
√

2/(ωµσ). Using the fact that the tangential component of the

electric field is very small and hence neglecting the magnetic current we can write:

Ex = ZsJx (5.23)

Similarly,

Ez = ZsJz (5.24)

5.2.4 R-card/IBC Approximation

A generalized R-card/IBC formulation was reported by [11]. This is derived assuming that all

the current is existing on the bottom surface of the metal strip. This can be obtained by putting

the terms corresponding to the Jtop in the derivation for the two surface approximation given in the

next section equal to zero. Therefore

Zs =
1

σst

(1 + j)t/δ

tanh[(1 + j)t/δ]
(5.25)
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Thus

Eg = ZsJg (5.26)

When we consider the above four approximations the product of the electric field and the cur-

rent on the left hand side of the integral equation while using the Galerkin method is not zero.

Because the tangential component of the electric field on the metal strip is no longer zero. There-

fore, by substituting the value of the Eg depending on the approximation we want to use, the inner

product of the electric field with the testing functions can be written as:

⟨Ẽg, J̃gi⟩ = ⟨ZsJg, J̃gi⟩ = Zs

∞∑
n=1

J̃gJ̃gi = Zs

Mg∑
k=1

agk

∞∑
n=1

J̃gkJ̃gi (5.27)

Thus for the R-Card, Tedjini, IBC and R-Card/IBC approximations we can accommodate this

term by subtracting it from the Green’s function as follows:

Gs
gg(αn) = Ggg − Zs (5.28)

where Zs = 1/(σst) for R-Card and the Tedjini’s approximation, Zs = (1 + j)/(σsδ) for IBC

approximation and Zs =
1
σst

(1+j)t/δ
tanh[(1+j)t/δ]

for the R-card/IBC approximation.

5.2.5 Generalized Two Surface Approximation

Morsey et al. [63] have developed a generalized approximation for the finite thickness and

conductivity of metal lines which considers the currents on the top as well as at the bottom surface

of the strip. It reduces to the IBC approximation when the thickness of the conductor is large

and to the R-card approximation when thickness is less than the skin depth on two parallel strips

separated by a distance t.

Assuming that the width to thickness ratio of the conductor is large. The tangential components

of the electric field can be written as:

Ep(y) = E+
p e

−γy + E−
p e

+γy (5.29)
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Using the Faraday’s law at the top and bottom surface we can solve for the coefficients. The

relationship between the tangential components of the current and the magnetic field can be written

as [63]:

 Ep,top

Ep,bot

 =
Z0

j sin(jγt)

− cos(jγt) 1

−1 cos(jγt)

×

 Hq,top

Hq,bot

 (5.30)

where q = x for p = z and q = z for p = x. For the case when the conductivity of the conductor

is large, the tangential component of electric field on the surface of the conductor will be very

small. Therefore, the contribution of the magnetic current can be neglected as it will be much

smaller than the electric current. Thus, using the boundary condition for the tangential magnetic

field (J = n̂×H) we get:

 Ep,top

Ep,bot

 = − Z0

sinh(γt)

cosh(γt) 1

1 cosh(γt)

×

 Jp,top

Jp,bot

 (5.31)

where γ =
√
jωµσ and Z0 =

√
jωµ
σ

5.3 Numerical Results

Figures 5.5(a) and 5.6(a) show the slow wave ratio (β/k0) for two shielded MIS transmission

lines. It can be concluded that the R-card/IBC model works same as R-card model when the

thickness of the strip is less than 1δ and behaves similar to the IBC model for strip thickness

greater than 3δ. Also the Tedjini’s approach which includes the effect of thickness behave quite

different from the R-card model as the thickness increases.

Figures 5.5(b) and 5.6(b) show the loss α for the same two MIS transmission lines and the same

observations can be made as from the plot of SWR but it makes it more clear that the R-card/IBC

model approaches the IBC model for large values of strip thickness.
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Figure 5.5 (a) Slow wave Ratio (SWR) (b) α (dB/mm) as a function of
frequency for a shielded MIS transmission line with parameters
µr = 1, h1 = 1µm, h2 = 250µm, w = 80µm, a = 4mm,
d = 3.2mm, c = a/2, ϵr1 = 4, ϵr2 = 12, σ1 = 0, σ2 = 5S/m,
σs = 5.88 × 107, skin depth δ = 2.075µm, f = 1GHz using four
different approximate models for finite thickness and conductivity of
metal strip and triangle-triangle basis (Mz = 4 and Mx = 2)
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Figure 5.6 (a) Slow wave ratio (SWR) (b) α (dB/mm) as a function of
frequency for a shielded MIS transmission line with parameters
µr = 1, h1 = 5mm, h2 = 5mm, w = 1mm, a = 20mm,
d = 10mm, c = a/2, ϵr1 = 4, ϵr2 = 12, σ1 = 0, σ2 = 5S/m,
σs = 5.88 × 107, δ = 6.562µm, f = 100MHz using four differ-
ent approximate models for finite thickness and conductivity of metal
strip.



www.manaraa.com

106

CHAPTER 6. Extension of the Spectral Domain Immittance Approach for

Multiple Metal Lines on the Same Plane and its Acceleration Using Two

Super Convergent Series

6.1 Extending the Spectral Domain Immittance Approach

In Chapter 3 we presented a technique to speed up the analysis of multilayered shielded mi-

crostrip with single metal line which is displaced from the edge by a distance c. In this Chapter,

we extend the same technique for a multilayered shielded microstrip with multiple metal lines in

the same plane. The derivation for the Green’s function is the same because all the metal lines

are located in the same layer. Figure 6.1 shows a multilayered shielded microstrip with M metal

lines with a unique width 2wi (i = 1, ....,M ) displaced by a distance ci from the left wall located

on y = 0 plane and extending infinitely in the z direction. The side walls are perfect electric

conductor (PEC) or perfect magnetic conductor (PMC). The mth layer is defined by ϵm, µm and

km = ω
√
ϵmµm. The size of the box is a. The layers above the signal metal strip are numbered

from 1 to q + 1 and the layers below are numbered from −1 to −l − 1. The top and bottom cover

layers can be PEC, PMC or dielectric extending upto infinity. In order to extend the SDIA for

this case we need to assume the current on all the strips using suitable basis functions. Also, we

need to consider the cross coupling between the metal lines. If we use the same number of basis

functions (Mz for the longitudinal current and Mx for the transverse current) for each strip then

this would result in a matrix of size [No.ofstrips × (Mx +Mz)])
2. Therefore, the need for fast

and accurate evaluation of the matrix elements increases even more. The elements of the MoM



www.manaraa.com

107

 

Figure 6.1 Shielded multilayered interconnects with multiple metal lines in one
of the layers

matrix can be written as:

Kuv
mnpq =

∞∑
k=1

GpqJ̃
p
um(wpαk)J̃

q
vn(wqαk) (6.1)

where (u, v) ∈ (x, z), J̃p
um refers to u component of the mth basis for the pth metal line. Thus,

we can assume the unknown current in the form of suitable basis functions and then following the

same procedure as in Chapter 3 we can obtain the value of the normalized propagation constant.
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6.2 Acceleration Using Asymptotic Approximation and Two Super

Convergent Series

In order to evaluate the elements of the K matrix as given in (6.1) we need to truncate the

infinite summation which consists of slowly converging spectral series. If we choose Chebyshev

polynomials as the basis functions the Fourier transform of the basis function will be a Bessel

function as seen in the Chapter 3. Therefore, we need to deal with the product of Bessel functions.

In order to accelerate the infinite summation we use the same technique as in Chapter 3 i.e. the

asymptotic expansion of the basis functions and the Green’s functions. Using (2.71) the asymptotic

expansion for the product of the Bessel functions can be written as:

Jp
u(wpz)J

q
v (wqz) =

2

πz
√
wpwq

[
L0 +

1

8z
L1 +

1

(8z)2
L2 +

1

(8z)3
L3 +

1

(8z)4
L4 +

1

(8z)5
L5

]
(6.2)

where z = αn and

L0 = Apq
uv (6.3)

L1 = −Bpq
uvC

1
u/wp − Cpq

uvC
1
v/wq (6.4)

L2 = −Apq
uvC

2
v/w

2
q +Dpq

uvC
1
vC

1
u/(wpwq)− Apq

uvC
2
u/w

2
p (6.5)

L3 = Bpq
uv(C

3
u/w

3
p + C1

uC
2
v/(wpw

2
q)) + Cpq

uv(C
3
v/w

3
q + C1

vC
2
u/(w

2
pwq)) (6.6)

L4 = Apq
uv(C

2
uC

2
v/(w

2
pw

2
q) + C4

u/w
4
p + C4

v/w
4
q)−Dpq

uv(C
3
vC

1
u/(w

3
qwp) + C1

vC
3
u/(w

3
pwq)) (6.7)

L5 = −Bpq
uvC

3
uC

2
v/(w

3
pw

2
q)− Cpq

uvC
3
vC

2
u/(w

3
qw

2
p) (6.8)

where J̃p
u refers to the mth basis for the pth metal line.

Gzz = Gzz0/(αn)(1− y21zz/α
2
n − y22zz/α

4
n) (6.9)
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F zz
mnpq =2Gzz0/(α

2
nπ

√
wpwq)

[
L0 +

1

8αn

L1 +
1

(8αn)2
(L2 − 64y21zzL0) +

1

(8αn)3
(L3 − 64y21zzL1)

+
1

(8αn)4
(L4 − 64y21zzL2 − 4096y22zzL0) +

1

(8αn)5
(L5 − 64y21zzL3 − 4096y22zzL1)

]
(6.10)

Define

S1 = sin[(wp + wq + cp + cq) z] (6.11)

S2 = sin[(wp + wq − cp − cq) z] (6.12)

S3 = sin[(wp + wq + cp − cq) z] (6.13)

S4 = sin[(wp + wq − cp + cq) z] (6.14)

S5 = sin[(wp − wq + cp + cq) z] (6.15)

S6 = sin[(wp − wq − cp − cq) z] (6.16)

S7 = sin[(wp − wq + cp − cq) z] (6.17)

S8 = sin[(wp − wq − cp + cq) z] (6.18)

Similarly, Ci(i = 1, 2...8) are defined by replacing sine by cosine in the expression for Si. For

u = odd and v = odd

Apq
uv = 1/8

[
(−1)(u+v)/2(S1 + S2 + S3 + S4) + (−1)(u−v)/2(C5 + C6 + C7 + C8)

]
(6.19)

Dpq
uv = 1/8(−(−1)(u+v)/2

[
(S1 + S2 + S3 + S4) + (−1)(u−v)/2(C5 + C6 + C7 + C8)

]
(6.20)

Bpq
uv = 1/8

[
− (−1)(u+v)/2(C1 + C2 + C3 + C4) + (−1)(u−v)/2(S5 + S6 + S7 + S8)

]
(6.21)

Cpq
uv = 1/8

[
− (−1)(u+v)/2(C1 + C2 + C3 + C4)− (−1)(u−v)/2(S5 + S6 + S7 + S8)

]
(6.22)

For u = even and v = even

Apq
uv = 1/8

[
(−1)(u+v)/2(S1 + S2 − S3 − S4) + (−1)(u−v)/2(C5 + C6 − C7 − C8)

]
(6.23)

Dpq
uv = 1/8

[
− (−1)(u+v)/2(S1 + S2 − S3 − S4) + (−1)(u−v)/2(C5 + C6 − C7 − C8)

]
(6.24)
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Bpq
uv = 1/8

[
− (−1)(u+v)/2(C1 + C2 − C3 − C4) + (−1)(u−v)/2(S5 + S6 − S7 − S8)

]
(6.25)

Cpq
uv = 1/8

[
− (−1)(u+v)/2(C1 + C2 − C3 − C4)− (−1)(u−v)/2(S5 + S6 − S7 − S8)

]
(6.26)

For u = odd and v = even

Apq
uv = 1/8

[
− (−1)(u+v)/2(S1 − S2 − S3 + S4) + (−1)(u−v)/2(−C5 + C6 + C7 − C8)

]
(6.27)

Dpq
uv = 1/8

[
(−1)(u+v)/2(S1 − S2 − S3 + S4) + (−1)(u−v)/2(−C5 + C6 + C7 − C8)

]
(6.28)

Bpq
uv = 1/8

[
− (−1)(u+v)/2(−C1 + C2 + C3 − C4)− (−1)(u−v)/2(S5 − S6 − S7 + S8)

]
(6.29)

Cpq
uv = 1/8

[
− (−1)(u+v)/2(−C1 + C2 + C3 − C4) + (−1)(u−v)/2(S5 − S6 − S7 + S8)

]
(6.30)

For u = even and v = odd

Apq
uv = 1/8

[
− (−1)(u+v)/2(S1 − S2 + S3 − S4) + (−1)(u−v)/2(−C5 + C6 − C7 + C8)

]
(6.31)

Dpq
uv = 1/8

[
(−1)(u+v)/2(S1 − S2 + S3 − S4) + (−1)(u−v)/2(−C5 + C6 − C7 + C8)

]
(6.32)

Bpq
uv = 1/8

[
− (−1)(u+v)/2(−C1 + C2 − C3 + C4)− (−1)(u−v)/2(S5 − S6 + S7 − S8)

]
(6.33)

Cpq
uv = 1/8

[
− (−1)(u+v)/2(−C1 + C2 − C3 + C4) + (−1)(u−v)/2(S5 − S6 + S7 − S8)

]
(6.34)

All the terms of (6.10) are of the form sine/cosine function divided by ks, where s=2,3,4,5... There-

fore, its infinite summation can be easily evaluated using the two super convergent series as shown

in Chapter 3. Thus following the same procedure as before we can obtain the value of the propa-

gation constant.

6.3 Numerical Results

We have used this program to test the performance of different basis functions including pulse-

triangle, triangle-triangle and Chebyshev polynomials. The detailed expression for the pulse-

triangle and the triangle-triangle basis can be found in Chapter 5.
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Figure 6.2 A three layered shielded microstrip with three metal lines in one of
the layers and parameters ϵr1 = ϵr3=9.7, ϵr2 =4, µr1 = µr2 = µr3= 1,
f= 3 GHz, h1=h2=h3=h=1 mm, a=10 mm, 2w/h =1, s/h =0.1 [2]

Table 6.1 β/k0 for different Nmax for the dominant mode of a three layered
shielded microstrip three metal lines with parameters as shown in Fig-
ure 6.2 using Chebyshev polynomials as basis

Mode No. Nmax Mz Mx ϵreff ϵreff[2]

1 1000 2 2 6.0035 6.02

2 1000 2 2 4.7924 4.78

3 1000 2 2 4.3661 4.23

Table 6.2 β/k0 for different Nmax for the dominant mode of a three layered
shielded microstrip three metal lines with parameters as shown in Fig-
ure 6.2 using Triangle-Triangle basis

Mode No. Nmax Mz Mx ϵreff

1 1000 3 1 5.9750

2 10000 7 5 4.7993

3 10000 3 1 4.3187
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Table 6.3 β/k0 for different Nmax for the dominant mode of a three layered
shielded microstrip three metal lines with parameters as shown in Fig-
ure 6.2 using Pulse-Triangle basis

Mode No. Nmax Mz Mx ϵreff

1 10000 2 1 5.9680

2 10000 10 9 4.7984

3 10000 6 5 4.2597
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Tables 6.1, 6.2 and 6.3 show the comparison of the ϵreff for the first three modes of a three

conductor shielded microstrip using three different basis functions. The results were compared

with [2] which uses the finite difference method which is less accurate compared to the SDA.

Table 6.4 shows the comparison of the normalized propagation constant using different basis

 

Figure 6.3 A Three layered shielded microstrip with two metal lines in one of the
layers and parameters ϵr1 =1, ϵr2 =2.2, µr1 = µr2 = 1, f= 150 GHz,
h1= h2=.254mm, h3=.762mm a=2.54mm, s2 = 0.0127mm, s1 : 2w1 :
s2 : 2w2 : s3 = 89.5 : 20 : 1 : 40 : 49.5[3].

Table 6.4 β/k0 for different Nmax for the dominant mode of a coupled suspended
shielded microstrip with parameters as shown in Figure 6.3 using dif-
ferent basis functions

Basis Nmax Mz Mx β/k0

Chebychev-Chebychev 10000 8 8 1.260959

Triangle-Triangle 1000 5 3 1.260178

Pulse-Triangle 10000 6 5 1.260345

functions for a shielded microstrip with two metal lines. The results were compared with [3]

which reports β/k0 = 1.26091 for the same structure.
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Figure 6.4 A three layered shielded microstrip with seven metal lines in one of
the layers and parameters ϵr1 = ϵr3=9.7, ϵr2 =4, µr1 = µr2 = µr3= 1,
f= 3 GHz, h1=h2=h3=h=1µm, a=20µm, 2w/h =1, s/h =0.1

Tables 6.5 and 6.6 shows that this approach can be used to obtain the first seven modes of

a shielded microstrip with seven metal lines in the same plane using Chebyshev polynomial as

basis and triangle-triangle basis, respectively. This confirms that the triangle-triangle basis has a

reasonably good convergence even for this case although it is much slower than the Chebyshev

polynomials.
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Table 6.5 ϵreff for different Nmax for the seven modes of a three layered shielded
microstrip with seven metal lines with parameters as given in Figure
6.4 using Chebyshev polynomials as basis.

Mode No. Nmax Mz Mx β/k0

1 1000 4 4 4.7095

2 1000 4 4 4.8105

3 1000 4 4 4.9812

4 1000 4 4 5.2203

5 1000 4 4 5.5083

6 1000 4 4 5.8001

7 1000 4 4 6.0242

Table 6.6 ϵreff for different Nmax for the seven modes of a three layered shielded
microstrip with seven metal lines with parameters as given in Figure
6.4 using Triangle-Triangle basis.

Mode No. Nmax Mz Mx β/k0

1 1000 6 4 4.7114

2 1000 6 4 4.8131

3 1000 6 4 4.9838

4 1000 6 4 5.2195

5 1000 6 4 5.5017

6 1000 6 4 5.7857

7 1000 6 4 6.0024
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The accelerated SDIA was verified for a layered shielded microstrip with two and three metal

lines on the same interface. Tables 6.7 and 6.8 shows a comparison of the normalized propagation

constant and the ϵreff for a shielded microstrip with two and three metal lines, respectively, using

first four terms of the leading term extraction (LTE) and without using LTE (No LTE). It is observed

that using about 200 terms of the summation one can get 6 digits of accuracy in the value of the

normalized propagation constant. This would require nearly 106 terms without acceleration. Thus,

this technique has accelerated the SDIA for the case of multiple metal lines by nearly four orders

of magnitude. For a single strip microstrip line the CPU time for getting ϵreff correct up to 12 digits

is nearly .05 seconds using a 2.66 GHz Intel processor. The finite difference approach proposed

by Kaladhar and Chew [2] requires 12000 unknowns and a CPU time of about 90 seconds using

the DEC Personal Workstation 600 for a similar microstrip to obtain less than 3 significant digits

of accuracy.

Table 6.7 β/k0 for different Nmax for the dominant mode of a three layered
shielded microstrip as shown in Figure 6.3

Nmax Mz Mx β/k0

LTE 100 8 8 1.26253805

LTE 200 8 8 1.26095711

LTE 1000 8 8 1.26091722

LTE 2000 8 8 1.26091714

No LTE 100000 8 8 1.26091833
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Table 6.8 β/k0 for different Nmax for the dominant mode of a three layered
shielded microstrip with three metal lines and parameters as shown
in Figure 6.2

Nmax Mz Mx ϵreff

LTE 100 4 4 5.97131978

LTE 200 4 4 5.97139435

No LTE 1000000 4 4 5.97139451

LTE 100 8 8 5.97140413

LTE 200 8 8 5.97123043

LTE 1000 8 8 5.97123338

No LTE 1000000 8 8 5.97123388
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CHAPTER 7. Extension of Spectral Domain Immittance Approach for

Multiple Metal Lines on Different Planes in Uniaxial Anisotropic

Multilayered Shielded Interconnect

7.1 Introduction

In Chapter 6 the acceleration of the spectral domain immitance approach (SDIA) for solving

the isotropic multilayered shielded interconnect problem with multiple metal lines on the same

interface using superconvergent series has been discussed in detail. In this chapter we present an

extension of the SDIA to solve the anisotropic multilayered shielded interconnect problem with

arbitrarily spaced multiple metal lines in different layers. This is closer to what happens in modern

interconnects where we have a number of arbitrary spaced metal lines accept the fact that for now

we are assuming the metal lines to be zero thickness PEC. In Chapter 5 we have looked at some

models to incorporate the finite thickness and conductivity of metal lines in the SDIA which can be

easily integrated with this approach. So, this method can be used to obtain the equivalent medium

parameters for an interconnect structure.

Consider a multilayered shielded microstrip with multiple metal lines in different layers as

shown in Figure 7.1 consisting of M layers of lossy or dielectric material numbered from bottom

to top. The side walls are perfect electric conductor (PEC) or perfect magnetic conductor (PMC).

The mth layer is defined by [ϵmx, ϵmy, ϵmz], [µmx, µmy, µmz] and σm. Interfaces mi i = 1, 2, ...N

have multiple PEC strips on their surface each with a unique width 2wkmi and at a distance ckmi

from the left side wall, extending infinitely in the z direction. (k = 1, 2, .., Nmi and Nmi is the
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number of strips on the mth
i interface). The topmost and bottommost layers can be PEC, PMC or

dielectric extending up to infinity.

All the field components can be written as a superposition of plane waves inhomogeneous in

the y direction propagating at an angle θ with the z axis. For each θ the hybrid modes can be

represented into two transmission line models (TEy and TMy) as shown in Figure 7.2. For the

case when the the medium is uniaxially anisotropic i.e. ϵx = ϵz the TEy and TMy modes are

completely decoupled into two independent transmission line models. Therefore, Ju creates only

the TEy fields and Jv creates only the TMy fields and the immittance matrix will be diagonal [54].

But for the biaxial anisotropic case the TEy and TMy modes cannot be completely decoupled as

the fields Ev and Hv will be contributed by both the components of current (Ju and Jv). Thus,

we will need to include an off diagonal term in the admittance matrix which is referred to us

the conjoint admittance parameter in [64]. The parameters in (x, y, z) coordinates are related to

(u, y, v) coordinates by the matrix transformation:

 P̃u

P̃v

 =

− cos θ sin θ

sin θ cos θ

×

 P̃x

P̃z

 (7.1)

where θ = cos−1(β/
√

α2
n + β2) and P can be E or H .
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Figure 7.1 Shielded multilayered interconnects with multiple metal lines (zero
thickness PEC) in different layers
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Figure 7.2 Transmission Line Model
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For this general case of biaxial anisotropic medium, in the spectral domain the electric and

magnetic fields will satisfy the following fourth degree propagation equations which can be ob-

tained from the Maxwell’s equations [64]:

∂4(Ẽy, H̃y)

∂y4
+ (f e

1i, f
h
1i)

∂2(Ẽy, H̃y)

∂y2
+ (f e

2i, f
h
2i)(Ẽy, H̃y) = 0 (7.2)

where

f e
1i = fh

1i = k2
0(ϵrxiµrzi + ϵrziµrxi)− α2

n(µxi/µyi + ϵxi/ϵyi)− β2(µzi/µyi + ϵzi/ϵyi) (7.3)

f e
2i = −[k2

0ϵrxiϵrziµxi/µyi − µxi(α
2
nϵxi − β2ϵzi)/(ϵyiµyi)][α

2
n + β2µzi/µxi − k2

0ϵryiµrzi] (7.4)

The expression for fh
2i can be obtained by interchanging ϵ and µ in the expression for f e

2i. We

can assume the solution of (7.2) to be of the form: For i ≤ mq:

H̃yi(αn, y) = Ci sinh[γ
a
hi(y −Hi)] +Di cosh[γ

b
hi(y −Hi)] (7.5)

Ẽyi(αn, y) = Ai sinh[γ
a
ei(y −Hi)] +Bi cosh[γ

b
ei(y −Hi)] (7.6)

For i ≥ mq + 1:

H̃yi(αn, y) = Ci sinh[γ
a
hi(Hi − y)] +Di cosh[γ

b
hi(Hi − y)] (7.7)

Ẽyi(αn, y) = Ai sinh[γ
a
ei(Hi − y)] +Bi cosh[γ

b
ei(Hi − y)] (7.8)

where q = 1, 2, ...Nmetal and Hi = Σi
k=1hk and

γa
pi =

√
{−fp

1 − [(fp
1 )

2 − 4fp
2 ]

1/2}/2 (7.9)

γb
pi =

√
{−f p

1 + [(f p
1 )

2 − 4fp
2 ]

1/2}/2 (7.10)

where p = e, h.

Note that the sign of the arguments for the two cases is opposite because looking from the mth

metal layer we would have to choose opposite signs for the γ for the layers above and below it.
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The remaining tangential components of fields in the (u, y, v) coordinates for the ith layer are

expressed in terms of Ẽyi and H̃yi as follows [65]:

Ẽui = −ωµyi

δn
H̃yi (7.11)

Ẽvi =
ωµyiαnβ(ϵzi − ϵxi)

δnδ2nϵ
H̃yi − j

ϵyiδn
δ2nϵ

∂Ẽyi

∂y
(7.12)

H̃ui = −ωϵyi
δn

Ẽyi (7.13)

H̃vi = −j
µyiδn
δ2nµ

∂H̃yi

∂y
+

ωϵyiαnβ(µxi − µzi)

δnδ2nµ
Ẽyi (7.14)

where

δn =
√

α2
n + β2 (7.15)

δ2nϵ = α2
nϵxi + β2ϵzi (7.16)

δ2nµ = α2
nµxi + β2µzi (7.17)

7.2 Self Impedance

7.2.1 TMy

In order to consider the effect of metal lines in the ith layer we introduce current densities Jui

and Jvi which are responsible for generating the TMy fields. Their Fourier transforms are J̃ui and

J̃vi, respectively. The TMy self impedance corresponding to ith metallization plane is defined as

[64]:

Z̃e
vi =

Ẽvi

J̃vi
(7.18)
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It is obtained by taking the reciprocal of the sum of admittances looking up (Ỹ e
vi up) and down

(Ỹ e
vi down) from the interface with the metallization assuming that there is no metallization present

in any of the other layers.

Z̃e
vi =

1

Ỹ e
vi up + Ỹ e

vi down

(7.19)

Ỹ e
vi up is determined by iterating from topmost layer to the (i+1)th layer and Ỹ e

vi down by iterating

from bottom most layer to the ith layer using the recursive relation:

Ỹ e
vi± = yevi

sinh(γa
eihi) + Se

vi± cosh(γb
eihi)

γc
ei cosh(γ

a
eihi) + Se

vi± sinh(γb
eihi)

(7.20)

where

yevi =
jωδ2nϵ
γb
eiδ

2
n

, γc
ei =

γa
ei

γb
ei

(7.21)

and

Se
vi± = Ỹ e

v(i±1)±
γc
ei

yevi
(i = 2, 3..,M − 1) (7.22)

with initial conditions Ỹ e
v1− = yev1 coth(γ

b
e1h1) and Ỹ e

vM+ = yevM coth(γb
eMhM) assuming that the

top and bottom boundaries are PEC. Thus,

Ỹ e
vi up = Ỹ e

v(i+1)+ (7.23)

Ỹ e
vi down = Ỹ e

vi− (7.24)

7.2.2 Conjoint Impedance Parameter

For the biaxial anisotropic materials it is not possible to decouple the TEy and TMy modes

into two independent transmission lines as is possible for the uniaxial case [66]. Hence, a conjoint

impedance parameter [64] is used in order to consider the remaining field components i.e. Ẽv

for the TEy mode and H̃u for the TMy mode. This conjoint parameter is nothing but the TMy

impedance at the interface with the metallization due to the presence of both Ju and Jv in its
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equivalent circuit at the same time. The conjoint impedance parameter for the ith metallization

interface is defined as:

Z̃e
uvi =

Ẽvi

J̃ui
(7.25)

Z̃e
uvi =

1

Ỹ e
uvi up + Ỹ e

uvi down

(7.26)

The admittances Ỹ e
uvi up and Ỹ e

uvi down are determined recursively similar to the TMy admittances

using the recursion relation [64]:

Ỹ e
uvi± = yeuvi

sinh(γa
eihi) + Se

uvi± cosh(γb
eihi)

γc
ei cosh(γ

a
eihi) + Se

uvi± sinh(γb
eihi)

(7.27)

where

yeuvi = yevi
αnβ(µxi − µzi)

δ2nµ
(7.28)

and

Se
uvi± = Ỹ e

uv(i±1)±
γc
ei

yeuvi
(i = 2, 3...,M − 1) (7.29)

with initial conditions Ỹ e
uv1− = yeuv1 coth(γ

b
e1h1) and Ỹ e

uvM+ = yeuvM coth(γb
eMhM) assuming the

top and bottom boundary to be PEC.

7.2.3 TEy

The current density J̃u is responsible for the TEy fields. Similar to the TMy case, the self

impedance (Z̃h
ui) corresponding to ith metallization layer is defined as:

Z̃h
ui =

Ẽui

J̃ui
(7.30)

It is obtained by taking the reciprocal of the sum of the admittances looking up (Ỹ h
ui up) and down

(Ỹ h
vi down) from the interface with the metallization assuming that there is no metallization present

in any of the other layers.
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Z̃h
ui =

1

Ỹ h
ui up + Ỹ h

ui down

(7.31)

Ỹ h
ui up is determined by iterating from topmost layer to the (i+1)th layer and Ỹ h

ui down by iterating

from bottom most layer to the ith layer using the recursive relation [64]:

Ỹ h
ui± = yhui

Sh
ui± cosh(γa

hihi) + γd
hi sinh(γ

b
hihi)

Sh
ui± sinh(γa

hihi) + cosh(γb
hihi)

(7.32)

where γd
hi = γb

hi/γ
a
hi,

yhui =
jδ2nγ

a
hi

ωδ2nµ
, γc

hi =
γa
hi

γb
hi

(7.33)

and

Sh
ui± =

Ỹ h
u(i±1)±

yhui
(i = 2, 3..,M − 1) (7.34)

with initial conditions Ỹ h
u1− = yhu1 coth(γ

a
h1h1) and Ỹ h

uM+ = yhuM coth(γa
hMhM).

7.3 Transfer Impedance

7.3.1 TMy

The transfer impedance corresponding to the TMy mode (Z̃h
vij) is defined assuming that there

is no metallization in any layer accept the jth as follows [65]:

Z̃e
vij =

Ẽvi

J̃vj
(7.35)

For i < j

Z̃e
vij = Z̃e

vj

mj∏
k=mi+1

Ẽvk(αn, Hk)

Ẽvk(αn, Hk−1)
= Z̃e

vj

mj∏
k=mi+1

ỹevk
ỹevk cosh(γ

b
hkhk) + Ỹ e

v(k−1)− sinh(γa
hkhk)

(7.36)

For i > j

Z̃e
vij = Z̃e

vj

mi∏
k=mj+1

Ẽvk(αn, Hk−1)

Ẽvk(αn, Hk)
= Z̃e

vj

mi+1∏
k=mj

ỹevk
ỹevk cosh(γ

b
hkhk) + Ỹ e

v(k+1)+ sinh(γa
hkhk)

(7.37)



www.manaraa.com

127

7.3.2 TEy

The transfer impedance corresponding to the TEy mode (Ỹ h
uij) is defined assuming that there is

no metallization in any layer accept the jth as follows:

Z̃h
uij =

Ẽui

J̃uj
(7.38)

For i < j

Z̃h
uij = Z̃h

uj

mj∏
k=mi+1

Ẽuk(αn, Hk)

Ẽuk(αn, Hk−1)
= Z̃h

uj

mj∏
k=mi+1

ỹhuk
ỹhuk cosh(γ

b
hkhk) + Ỹ h

u(k−1)− sinh(γa
hkhk)

(7.39)

For i > j

Z̃h
uij = Z̃h

uj

mi∏
k=mj+1

Ẽuk(αn, Hk−1)

Ẽuk(αn, Hk)
= Z̃h

uj

mi+1∏
k=mj

ỹhuk
ỹhuk cosh(γ

b
hkhk) + Ỹ h

u(k+1)+ sinh(γa
hkhk)

(7.40)

7.3.3 Conjoint Transfer Impedance Parameter

For the biaxial anisotropic materials it is not possible to decouple the TEy and TMy modes into

two independent transmission lines as is possible for the uniaxial case [66]. Hence, we introduce

a new conjoint transfer impedance parameter in order to consider the remaining field components

i.e. Ẽv for the TEy mode and H̃u for the TMy mode. This conjoint parameter is nothing but the

TMy transfer impedance expressing the coupling effect due to the source J̃uj to the field at the ith

metallization interface due to the presence of both J̃uj and J̃vj in its equivalent circuit at the same

time. It is defined as:

Z̃e
uvij =

Ẽvi

J̃uj
(7.41)

The derivation of the conjoint transfer impedance has been left as future work for those inter-

ested in biaxial anisotropic medium.
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7.4 Green’s Function

Using these impedances we can express the Fourier transform of electric field components

in terms of the Fourier transform of current components. For the uniaxial anisotropic case this

relation can be written as:



Ẽu1

Ẽv1

Ẽu2

Ẽv2

...

ẼuN

ẼvN



=



Z̃h
u1 0 Z̃h

u12 0 Z̃h
u13 ... Z̃h

u1N 0

0 Z̃e
v1 0 Z̃e

v12 0 ... 0 Z̃e
v1N

... ... ... ... ... ... ... ...

Z̃h
uN1 0 Z̃h

uN2 0 Z̃h
uN3 ... Z̃h

uN 0

0 Z̃e
vN1 0 Z̃e

vN2 0 ... 0 Z̃e
vN


×



J̃u1

J̃v1

J̃u2

J̃v2

...

J̃uN

J̃vN



(7.42)

But for the biaxial anisotropic medium we need to include terms corresponding to the conjoint

self and transfer admittance in the admittance matrix so the current field relationship can be written

as:

Ẽu1

Ẽv1

Ẽu2

Ẽv2

...

ẼuN

ẼvN



=



Z̃h
u1 0 Z̃h

u12 0 Z̃h
u13 ... Z̃h

u1N 0

Z̃e
uv1 Z̃e

v1 Z̃e
uv12 Z̃e

v12 Z̃e
uv13 ... Z̃e

uv1N Z̃e
v1N

... ... ... ... ... ... ... ...

Z̃h
uN1 0 Z̃h

uN2 0 Z̃h
uN3 ... Z̃h

uN 0

Z̃e
uvN1 Z̃e

vN1 Z̃e
uvN2 Z̃e

vN2 Z̃e
uvN3 ... Z̃e

uvN Z̃e
vN


×



J̃u1

J̃v1

J̃u2

J̃v2

...

J̃uN

J̃vN



(7.43)

Thus,

[Euv] = [Zuv][Juv] (7.44)
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Having obtained the impedance matrix in the (u, v) coordinates we go back to the (x, z) using

the following sequence of transformations.

[Exz] = [T−1][Zuv][T ][Jxz] (7.45)

[Exz] = [Gxz][Jxz] (7.46)

where T is the transformation matrix (whose inverse is same as the matrix itself) with all elements

zero except a repetition of the 2× 2 matrix along it main diagonal as shown below:

T = T−1 =



− cos θ sin θ 0 0 .... 0 0

sin θ cos θ 0 0 .... 0 0

0 0 − cos θ sin θ .... 0 0

0 0 sin θ cos θ .... 0 0

0 0 0 0 .... − cos θ sin θ

0 0 0 0 .... sin θ cos θ


(7.47)

where θ = cos−1(β/
√
α2
n + β2). Finally, in the (x, y) coordinates the matrix relation can be

written as: 

Ẽx1

Ẽz1

Ẽx2

Ẽz2

...

ẼxN

ẼzN



=



Z11 Z12 Z13 ..... Z1(2N)

Z21 Z22 Z23 ..... Z2(2N)

Z31 Z32 Z33 ..... Z3(2N)

Z(2N)1 Z(2N)2 Z(2N)3 ..... Z(2N)(2N)


×



J̃x1

J̃v1

J̃x2

J̃v2

...

J̃xN

J̃vN



(7.48)

7.5 Current Basis Function

Unknown current can be expanded in the form of suitable basis functions. Chebyshev poly-

nomials are the best choice for the case when we are treating the metal as PEC. But if we use
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other approximations for the finite thickness and conductivity a subdomain basis like the triangle-

triangle basis would be a better choice. The unknown current on the kth metal line on the mth

metallization interface can be expanded using suitable basis functions as follows:

J̃xmk(x) =

Pmk∑
r=1

armkJ̃xrmr(x) (7.49)

J̃zmk(x) =

Qmk∑
r=1

brmkJ̃zrmr(x) (7.50)

Using the Galerkin’s method and Parseval’s theorem the elements of the MoM matrix can be

written as:

Ksmk,tnr
pq =

∞∑
n=1

Gmn
pq (αn, β)J̃psmkJ̃qtnr (7.51)

where (p, q) ∈ (x, z), mk refers to the kth metal line in the mth metallization layer from the bottom

and nr refers to the rth metal line in the nth metallization layer from the bottom. (s, t) are the sth

and tth basis corresponding to p and q, respectively. The matrix [K] will be a square matrix with

side consisting of (Total metal lines × (Mx+Mz)) elements. Then by equating the determinant of

the [K] we can obtain the value of β. Once we know the β for a particular mode we can obtain

the eigen vectors. And on getting the eigen vectors we can get the current distribution on the strip.

From the current distribution we can obtain all the field components.

7.6 Numerical Results

Table 7.1 shows the normalized propagation constant for the shielded microstrip with two metal

lines in different layers as shown in Figure 7.3 for different basis and different number of terms of

the summation. Our results converge for different basis as well as different number of terms. The

results are also in close agreement with the space domain approach used by [4].

Table 7.2 show a comparison of the normalized propagation constants for the shielded mi-

crostrip shown in Figure 7.4 as function of frequency with that obtained by Kaladhar and Chew
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Figure 7.3 A three layered shielded microstrip with two metal lines in different
layers and parameters ϵr1 =ϵr2=[4 4 4], ϵr3 =[1 1 1], µr1 = µr2 = µr3

=[1 1 1], h1= h2=1mm, h3=6mm, 2w=1mm a=10mm [4].

[2] using the finite difference approach. The results show good agreement.
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Table 7.1 β/k0 for different Nmax for the different modes of a three layered
shielded microstrip with two metal lines in different layers with pa-
rameters as shown in Figure 7.3 at 31.59 GHz for c11 = a/2 and
c21 = a/2.

Normalized propagation constant

Nmax Mz Mx Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

100 2 2 1.9829 1.8407 1.0700 0.8330 0.3420

100 8 8 1.9884 1.8469 1.0694 0.8331 0.3438

200 8 8 1.9834 1.8411 1.0703 0.8336 0.3419

300 8 8 1.9826 1.8401 1.0705 0.8338 0.3415

1.963 [4] 1.854[4] 1.06[4] 0.835[4] 0.338[4]

Table 7.2 β/k0 for different frequencies using Nmax=300, Mx=4 and Mz=4 for
the dominant mode of a three layered uniaxial anisotropic shielded mi-
crostrip with parameters as shown in Figure 7.4

Frequency (in GHz) β/k0 β/k0[2]

6 3.2320 3.2321

12 3.3028 3.2972

18 3.3344 3.3337

24 3.3585 3.3591

30 3.3801 3.3795
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Figure 7.4 A three layered shielded microstrip with a total of three metal lines
in two different layers and parameters ϵr1 =ϵr2=[9.4 11.6 9.4], ϵr3 =[1
1 1], µr1 = µr2 = µr3 =[1 1 1], h1= h2=1mm, h3=4mm, 2w=1mm
a=10mm, c11=3.5 mm, c12= 6.5 mm and c21=5 mm [2].
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7.7 Acceleration Using the Two Super Convergent Series Approach

Since, as the number of metal lines increases the size of the MoM increase very rapidly. So

there is a need to speed up the computation of the matrix elements and there has not been any

attempt to solve this problem to the best of our knowledge due to its sheer complexity. But using

the approach developed in the previous chapter and the corresponding assumptions it is very easy

to speed up the computation of the matrix elements by many orders of magnitude and obtain very

accurate results for the propagation constant.

In that case we saw that the effect of all the layers accept the layer above and below the metal

lines will be negligible for large values of αn, similarly we can use the same approximation in the

case when we have multiple metal lines in different layers. Therefore, we do not need to include

the effect of interaction between metal lines which are separated by more than one layer after

considering the minimum number of terms (Nmin) in the summation. An expression of Nmin has

already been derived and presented in our earlier work.

So, for the terms of the Green’s function which take care of the cross coupling we only need to

find the leading term extraction for the case where the separation of the layers with the metal lines

is equal to one layer. Other terms, will have very negligible effect which will change the result in

the 9th digit of decimal of a value of Nmin between 50 − 100 for the dimensions of the order of

interest in interconnects.

Also, the approach for the numerical extraction of the leading terms which we have developed

can be very easily used to extract the asymptotic terms of the Green’s function in this case because

it is very tedious to extract even the first two leading terms analytically. Rest of the procedure will

be the same as that for the shielded microstrip with multiple metal lines in the same layer.
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CHAPTER 8. Summary and Contributions

The work reported in this thesis is summarized below.

1. A method to derive the Green’s function for an open microstrip using the combination of

TEy, TMy mode has been outlined.

2. Two novel approaches for fast convergence for series, namely, two super convergent se-

ries and mid point summation have been developed and applied to accelerate the SDA for

shielded microstrip interconnects. A method for recursively calculating the coefficients in

the MPS has been developed. This technique is one order faster than the existing Euler

Maclaurin formula.

3. These combined with the leading term extraction for the Bessel’s and Green’s function have

been used to accelerate the infinite series summation occurring the spectral domain approach

for shielded microstrip problems. The speed of computation of the elements of the Galerkin

matrix has been increased by nearly six orders of magnitude compared to the SDA without

acceleration. And a solutions for the propagation constant correct up to twelve significant

digits can be obtained using a few hundred terms of the summation which would otherwise

take 1012 terms of the infinite summation.

4. SDIA for shielded multilayered microstrip has been accelerated by nearly six orders of mag-

nitude using two super convergent series approach to speed up the infinite summation occur-

ring in the elements of the Galerkin Matrix. Closed form formula for choosing the parame-

ters to further speed up the second type of super convergent series have been derived. Also,
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a formula to choose the number of terms of the second super convergent series for a given

accuracy has been derived.

5. A simple and fast numerical technique to obtain higher order leading terms of the Green’s

function has been developed. It can be very handy in obtaining the asymptotic expansion

when it is difficult to do it analytically.

6. An equivalent model for multilayered lossy shielded microstrip has been developed using the

accelerated SDIA. The model can be used to reduce multiple lossy as well as lossless layers

to a single layer and also retains the inhomogeneity of the shielded microstrip. The model

is frequency independent for frequencies below the transition frequency. For frequencies

higher than the transition frequency the equivalent model is not frequency independent but it

gives good results for the higher order mode although it is derived using the dominant mode.

7. If one of the layers is semiconductor or metallic with finite conductivity. Using h equal to

the sum of the thickness of all the layers above it and n skin depths of this layer, if it is thick

enough, we can obtain approximately n − 1 significant digits in the value of complex ϵreff

and hence the ϵreq. The layers below this will have negligible effect on the equivalent model

and can be neglected.

8. Several interesting frequency independent characteristics of multilayered lossy and lossless

microstrip have been found both at low as well as high frequencies. One very interesting

result is that when we have a multilayered microstrip where some or all the layers have

a finite conductivity σi. For this case, we observe two transition frequencies. The first

transition frequency depends on the layer with the highest value of σi/ϵri irrespective of its

location w.r.t the signal metal and the transition occurs when the ratio (σi/ϵi)max/ω becomes

equal to 1. The second transition frequency occurs when the thickness of the layer with the

highest value of ϵri becomes comparable to the wavelength. Between the first and the second
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transition frequencies we see the near field effect and the ϵreff and σreff depend highly on the

layers nearest to the signal metal.

9. SDIA was extended to handle multiple metal lines in the same layer for a multilayered

shielded microstrip. Then, the SDIA for this case was accelerated using the two super con-

vergent series approach which was used for single metal line to obtain a speed up of more

than four order of magnitude compared to the standard SDIA.

10. The convergence of different basis functions including the pulse-triangle basis, the triangle-

triangle basis and the Chebyshev polynomials has been compared

11. SDIA was further extended to handle multiple metal lines in different layers for the uniaxial

anisotropic medium. Also, some ideas have been proposed to accelerate it using the same

asymptotic extraction followed by the use of two super convergent series approach used

before.

12. Several existing techniques for modeling the finite thickness and conductivity of metal lines

including IBC approximation, R-Card approximation and the IBC/R-Card approximation

and the two strip approximation have been studied. Also pulse-triangle basis and the triangle-

triangle basis have been implemented so as to integrate these approximation into the spectral

domain immitance approach.

8.1 Future Work

1. Accelerating the SDIA for multiple metal lines in different layers using the two super con-

vergent series approach and integrating the approximations for the finite thickness and con-

ductivity into the SDIA for this case.

2. Developing an equivalent model for finding the effective medium parameters for the case

when we have multiple metal lines in different layers.
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3. Extending the SDIA to a multilayered biaxial anisotropic medium with multiple metal lines

in different layers.

4. Solving the 3D problem so that we can deal with interconnects which are perpendicular to

each other and also metal patches with finite thickness and conductivity and then accelerating

it using the two superconvergent series approach.
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APPENDIX A. Super Convergent Series for Higher Orders

∞∑
n=1,3,5,..

cos(nz)/n3 =1.051799790264645 + z2/4 ln(z/2)− 3z2/8 + z4/288 + 7z6/86400

+ 31z8/10160640 + 127z10/870912000 + 73z12/9032601600 + .. (A.1)

∞∑
n=1,3,5,..

sin(nz)/n4 =1.051799790264645z + z3/12 ln(z/2)− 11z3/72 + z5/1440 + z7/86400

+ 31z9/91445760 + 127z11/9580032000 + 73z13/117423820800 + ..

(A.2)

∞∑
n=1,3,5,..

cos(nz)/n5 =1.004523762795139− (0.525899895132322z2 + z4/48 ln(z/2)

− 25z4/576 + z6/8640 + 7z8/4838400 + 31z10/914457600

+ 127z12/114960384000 + 73z14/1643933491200 + ..) (A.3)

∞∑
n=1

cos(nz)/n3 =1.202056903159594 + z2/2 ln z − 3z2/4− z4/288− z6/86400

− z8/10160640− .. (A.4)

∞∑
n=1

sin(nz)/n4 =1.2020569031595942z + z3/6 ln z − 11z3/36− z5/1440− z7/604800

− z9/(91445760)− .. (A.5)
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∞∑
n=1

cos(nz)/n5 =1.036927755143370− (1.2020569031595942z2/2 + z4/24 ln z

− 11z4/144− z4/96− z6/8640− z8/4838400)− .. (A.6)
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APPENDIX B. Spectral Domain Analysis of Open Microstrip Using TEy

and TMy Modes

 

B.1 Spectral Domain Analysis

The structure cannot support pure TEM modes. The solutions are hybrid modes which are

superpositions of TEy and TMy.

B.2 Vector Potentials

The vector potential of TEy modes is

Fy(x, y, z) =
1

2π
e−jβz

∫ ∞

−∞
dα f(α, y)e−jαx

and the vector potential of TMy modes is

Ay(x, y, z) =
1

2π
e−jβz

∫ ∞

−∞
dα g(α, y)e−jαx



www.manaraa.com

142

where

f(α, y) =


f1(α, y) y ≤ h

f2(α, y) y > h

g(α, y) =


g1(α, y) y ≤ h

g2(α, y) y > h

They satisfy homogeneous Helmholtz equation in source free region (y ̸= h),

∇2
tΦ

(p)
i (x, y) + (k2

i − β2)Φ
(p)
i (x, y) = 0

where Φ̃
(h)
i (α, y) = fi(α, y), Φ̃

(e)
i (α, y) = gi(α, y), k2

i = ω2ϵiµi, i = 1, 2 and p = e, h

The general solution can be written as:

Φ̃
(p)
i (α, y) = A

(p)
i (α)eγiy +B

(p)
i (α)e−γiy

= A
(p)
i (α) sinh(γiy) + B

(p)
i (α) cosh(γiy)

where γ2
i = α2 + β2 − k2

i and i = 1, 2.

The fields for TM and TE modes can be written as

Exi(x, y) =
1

ϵi

∂Fy

∂z
− j

ωµiϵi

∂2Ay

∂x∂y

Eyi(x, y) = − j

ωµiϵi

(
∂2

∂y2
+ k2

i

)
Ay

Ezi(x, y) = − 1

ϵi

∂Fy

∂x
− j

ωµiϵi

∂2Ay

∂y∂z
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Hxi(x, y) = − j

ωµiϵi

∂2Fy

∂x∂y
− 1

µi

∂Ay

∂z

Hyi(x, y) = − j

ωµiϵi

(
∂2

∂y2
+ k2

i

)
Fy

Hzi(x, y) = − j

ωµiϵi

∂2Fy

∂y∂z
+

1

µi

∂Ay

∂x

In the spectral domain after dropping the e−jβz the fields can be written as:

Ẽxi(α, y) = −jβ

ϵi
f(α, y)− α

ωµiϵi

∂g(α, y)

∂y

Ẽyi(α, y) = − j

ωµiϵi

(
∂2

∂y2
+ k2

i

)
g(α, y)

Ẽzi(α, y) =
jα

ϵi
f(α, y)− β

ωµiϵi

∂g(α, y)

∂y

H̃xi(α, y) = − α

ωµiϵi

∂f(α, y)

∂y
+

jβ

µi

g(α, y)

H̃yi(α, y) = − j

ωµiϵi

(
∂2

∂y2
+ k2

i

)
f(α, y)

H̃zi(α, y) = − β

ωµiϵi

∂f(α, y)

∂y
− jα

µi

g(α, y)

B.3 Boundary Conditions

At infinity the fields must vanish, so we have

f2(α, y) = A
(h)
2 (α)e−γ2(y−h)

g2(α, y) = A
(e)
2 (α)e−γ2(y−h)
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At y = 0

Ex1(x, 0) = 0 =⇒ Ẽx1(α, 0) = 0

−jβ

ϵ1
B

(h)
1 (α)− αγ1

ωϵ1µ1

A
(e)
1 (α) = 0

A
(e)
1 (α) = −jβωµ1

γ1α
B

(h)
1 (α)

Ez1(x, 0) = 0 =⇒ Ẽz1(α, 0) = 0

jα

ϵ1
B

(h)
1 (α)− βγ1

ωϵ1γ1
A

(e)
1 (α) = 0

A
(e)
1 (α) =

jαωµ1

γ1β
B

(h)
1 (α)

A
(e)
1 (α) = B

(h)
1 (α) = 0

Therefore

f1(α, y) = A
(h)
1 sinh(γ1y)

g1(α, y) = B
(e)
1 cosh(γ1y)

The tangential components of electric field must be continuous across the boundary.

Put

A(α) =
A

(h)
1 (α)

ϵr

and

B(α) =
B

(e)
1 (α)

ϵrµr

The tangential components of electric field must be continuous across the boundary.

Ex1(x, h) = Ex2(x, h),=⇒ Ẽx1(α, h) = Ẽx2(α, h),=⇒
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−jβ

ϵ0

(
B

(h)
2 (α)− A

(h)
1 (α) sinh(γ1h)

ϵr

)
− α

ωµ0ϵ0

(
−γ2B

(e)
2 (α)− γ1B

(e)
1 (α) sinh(γ1h)

µrϵr

)
= 0

Ez1(z, h) = Ez2(z, h) =⇒ Ẽz1(α, h) = Ẽz2(α, h),=⇒

−jα

ϵ0

(
B

(h)
2 (α)− A

(h)
1 (α) sinh(γ1h)

ϵr

)
− β

ωµ0ϵ0

(
−γ2B

(e)
2 (α)− γ1B

(e)
1 (α) sinh(γ1h)

µrϵr

)
= 0

Hence from above two equations we get:

B
(h)
2 (α) =

A
(h)
1 (α) sinh(γ1h)

ϵr

B
(e)
2 (α) = −γ1B

(e)
1 (α) sinh(γ1h)

γ2µrϵr

f(α, y) =


ϵrA(α) sinh(γ1y) y ≤ h

A(α) sinh(γ1h)e
−γ2(y−h) y > h

g(α, y) =


ϵrµrB(α) cosh(γ1y) y ≤ h

−γ1B(α)
γ2

sinh(γ1h)e
−γ2(y−h) y > h

Applying the boundary conditions for the magnetic field

Hz2(x, h)−Hz1(x, h) = Jx(x) =⇒ H̃z2(α, h)− H̃z1(α, h) = J̃x(α),=⇒

− β

ωµ2ϵ2

∂f(α, y)

∂y

∣∣∣∣
y=h+

− jα

µ2
g(α, h+) +

β

ωµ1ϵ1

∂f(α, y)

∂y

∣∣∣∣
y=h−

+
jα

µ1
g(α, h−) = J̃x =⇒

βA(α)

ωµ2ϵ2µ1

∆h +
jαB(α)

µ2ϵ2γ2
∆l = J̃x

where

∆h =
[
µ1γ2 sinh(γ1h) + µ2γ1 cosh(γ1h)

]
∆l =

[
ϵ2γ1 sinh(γ1h) + ϵ1γ2 cosh(γ1h)

]
Hx2(x, h)−Hx1(x, h) = −Jz(x) =⇒ H̃x2(α, h)− H̃x1(α, h) = −J̃z(α),=⇒
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− α

ωµ2ϵ2

∂f(α, y)

∂y

∣∣∣∣
y=h+

+
jβ

µ2
g(α, h+) +

α

ωµ1ϵ1

∂f(α, y)

∂y

∣∣∣∣
y=h−

− jβ

µ1
g(α, h−) = −J̃z =⇒

αA(α)

ωµ2ϵ2µ1

∆h −
jβB(α)

µ2ϵ2γ2
∆l = −J̃z

Solving the equations we get

A(α) =
ωµ1ϵ2µ2

(α2 + β2)∆h

(βJ̃x − αJ̃z)

B(α) = − jµ2ϵ2γ2
(α2 + β2)∆l

(αJ̃x + βJ̃z)

Ex2(α, h) = −jβϵr
ϵ1

Aα sinh(γ1h)−
αγ1ϵrµr

ωµ1ϵ1
Bα sinh(γ1h)

= Gxx(α, β)J̃x(α) +Gxz(α, β)J̃z(α)

Ẽz2(α, h) = −jαϵr
ϵ1

Aα sinh(γ1h)−
βγ1ϵrµr

ωµ1ϵ1
Bα sinh(γ1h)

= Gzx(α, β)J̃x(α) +Gzz(α, β)J̃z(α)

where

ϵr = ϵ1/ϵ2

µr = µ1/µ2

Gxx(α, β) =

[
−jβ2ωµ1µ2

(α2 + β2)∆h

+
jα2γ2γ1

ω(α2 + β2)∆l

]
sinh(γ1h)

=
j

(α2 + β2)

(
−β2ωµ1µ2

µ1γ2 + µ2γ1 coth(γ1h)
+

α2γ2γ1 tanh(γ1h)

ω(ϵ2γ1 tanh(γ1h) + ϵ1γ2)

)

=
j

(α2 + β2)ω∆

[
(−β2k2

2 + α2γ2
2)µ1γ1 tanh(γ1h) + (−β2k2

1 + α2γ2
1)µ2γ2

]
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where

∆ =
[
ϵ2γ1 tanh(γ1h) + ϵ1γ2

] [
µ1γ2 + µ2γ1 coth(γ1h)

]

Substituting γ2
2 = α2 + β2 − k2

2 we get

Gxx(α, β) =
j

(α2 + β2)ω∆

[
(α2 + β2)(α2 − k2

2)µ1γ1 tanh(γ1h) + (α2 + β2)(α2 − k2
1)µ2γ2

]
=

j

ω∆

[
(α2 − k2

2)µ1γ1 tanh(γ1h) + (α2 − k2
1)µ2γ2

]

Gxz(α, β) =
jαβωµ1µ2

(α2 + β2)∆h

sinh(γ1h) +
jα2γ1γ2

(α2 + β2)ω∆l

sinh(γ1h)

=
jαβ

(α2 + β2)∆ω

[
ω2µ1µ2(ϵ2γ1 tanh(γ1h) + ϵ1γ2) + γ1γ2 tanh(γ1h)(µ1γ2 + µ2γ1 coth(γ1h))

]
=

jαβ

(α2 + β2)∆ω

[
µ1γ1(γ

2
2 + k2

2) tanh(γ1h) + µ2γ2(γ
2
1 + k2

1)
]

=
jαβ

∆ω

[
µ1γ1 tanh(γ1h) + µ2γ2

]

Substituting γ2
2 + k2

2 = α2 + β2 and γ2
1 + k2

1 = α2 + β2, we have

Gxz(α, β) =
jαβ

∆ω

[
µ1γ1 tanh(γ1h) + µ2γ2

]

Ẽz2(α, h) =
jαϵr
ϵ1

Aα sinh(γ1h)−
βγ1ϵrµr

ωµ1ϵ1
Bα sinh(γ1h)

= Gzx(α, β)J̃x(α) +Gzz(α, β)J̃z(α)
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Similarly we can find

Gzx(α, β) =
jαβ

∆ω

[
µ1γ1 tanh(γ1h) + µ2γ2

]
Gzz(α, β) =

j

ω∆

[
µ1γ1(β

2 − k2
2) + µ2γ2(β

2 − k2
1) tanh(γ1h)

]

where

∆ =
[
ϵ2γ1 + ϵ1γ2 tanh(γ1h)

][
µ2γ1 + µ1γ2 coth(γ1h)

]
Dividing numerator and denominator by ϵ2 and µ2 the Greens function can be written as:

Gxx(α, β) =
jη2

k2∆̃

[
γ2(α

2 − k2
1) + µrγ1(α

2 − k2
2) tanh(γ1h)

]
Gxz(α, β) = Gzx(α, β) =

jη2αβ

k2∆̃

[
γ2 + µrγ1 tanh(γ1h)

]
Gzz(α, β) =

jη2

k2∆̃

[
γ2(β

2 − k2
1) + µrγ1(β

2 − k2
2) tanh(γ1h)

]
∆̃ =

[
ϵrγ2 + γ1 tanh(γ1h)

][
µrγ2 + γ1 coth(γ1h)

]
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